jadechoghari commited on
Commit
9d41912
·
verified ·
1 Parent(s): d1f7d0c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -1
README.md CHANGED
@@ -1,3 +1,36 @@
1
  ---
2
  library_name: transformers
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ ---
4
+
5
+ This is the HF transformers implementation for RT-DETRv2
6
+
7
+ Model: RT-DETRv2-S
8
+ RT-DETRv2, an improved Real-Time DEtection TRansformer (RT-DETR). RT-DETRv2 builds upon the previous state-of-the-art real-time detector, RT-DETR, and opens up a set of bag-of-freebies for flexibility and practicality, as well as optimizing the training strategy to achieve enhanced performance. To improve the flexibility, we suggest setting a distinct number of sampling points for features at different scales in the deformable attention to achieve selective multi-scale feature extraction by the decoder.
9
+
10
+ Usage:
11
+
12
+ ```python
13
+ import torch
14
+ import requests
15
+
16
+ from PIL import Image
17
+ from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
18
+
19
+ url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
20
+ image = Image.open(requests.get(url, stream=True).raw)
21
+
22
+ image_processor = RTDetrImageProcessor.from_pretrained("jadechoghari/RT-DETRv2")
23
+ model = RTDetrForObjectDetection.from_pretrained("jadechoghari/RT-DETRv2")
24
+
25
+ inputs = image_processor(images=image, return_tensors="pt")
26
+
27
+ with torch.no_grad():
28
+ outputs = model(**inputs)
29
+
30
+ results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)
31
+
32
+ for result in results:
33
+ for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
34
+ score, label = score.item(), label_id.item()
35
+ box = [round(i, 2) for i in box.tolist()]
36
+ print(f"{model.config.id2label[label]}: {score:.2f} {box}")