ihanif's picture
End of training
800f5a7 verified
metadata
library_name: transformers
language:
  - ps
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small - Hanif Rahman
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ps
          split: test
          args: 'config: ps, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 47.980613893376415

Whisper Small - Hanif Rahman

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8094
  • Wer Ortho: 51.6855
  • Wer: 47.9806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.6754 0.9346 100 0.6689 62.1021 58.4888
0.4477 1.8692 200 0.6215 57.3134 53.5101
0.2243 2.8037 300 0.6222 55.8883 52.0928
0.0949 3.7383 400 0.6822 54.6007 49.6989
0.0448 4.6729 500 0.7240 53.5301 49.4346
0.0201 5.6075 600 0.7355 52.7344 48.9646
0.0124 6.5421 700 0.7615 52.3944 48.6929
0.0035 7.4766 800 0.7868 51.0778 47.2243
0.002 8.4112 900 0.8025 51.6276 47.6869
0.0011 9.3458 1000 0.8094 51.6855 47.9806

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3