Whisper Small - Hanif Rahman

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8094
  • Wer Ortho: 51.6855
  • Wer: 47.9806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.6754 0.9346 100 0.6689 62.1021 58.4888
0.4477 1.8692 200 0.6215 57.3134 53.5101
0.2243 2.8037 300 0.6222 55.8883 52.0928
0.0949 3.7383 400 0.6822 54.6007 49.6989
0.0448 4.6729 500 0.7240 53.5301 49.4346
0.0201 5.6075 600 0.7355 52.7344 48.9646
0.0124 6.5421 700 0.7615 52.3944 48.6929
0.0035 7.4766 800 0.7868 51.0778 47.2243
0.002 8.4112 900 0.8025 51.6276 47.6869
0.0011 9.3458 1000 0.8094 51.6855 47.9806

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ihanif/whisper-small-tunning-v1

Finetuned
(2159)
this model

Dataset used to train ihanif/whisper-small-tunning-v1

Evaluation results