iantc104's picture
Upload YAML configuration
d76ccda verified
raw
history blame
2.43 kB
env:
name: none
resume: false
device: cuda:1
use_amp: false
seed: 1000
dataset_repo_id: iantc104/rpl_real_peg_in_hole
video_backend: pyav
training:
offline_steps: 50000
num_workers: 4
batch_size: 8
eval_freq: ???
log_freq: 100
save_checkpoint: true
save_freq: 10000
online_steps: ???
online_rollout_n_episodes: 1
online_rollout_batch_size: 1
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: null
online_buffer_capacity: null
online_buffer_seed_size: 0
do_online_rollout_async: false
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
num_episodes: 40
lr: 1.0e-05
weight_decay: 0.0001
grad_clip_norm: 10
delta_timestamps:
observation.images.wrist:
- -2.0
- -1.0
- 0.0
observation.state:
- -2.0
- -1.0
- 0.0
eval:
n_episodes: 1
batch_size: 1
use_async_envs: false
wandb:
enable: true
disable_artifact: false
project: rpl_sim
notes: ''
fps: 1
policy:
name: rnd
n_obs_steps: 3
fps: ${fps}
input_shapes:
observation.images.wrist:
- 3
- 120
- 160
observation.state:
- 22
input_normalization_modes:
observation.images.wrist: mean_std
observation.state: mean_std
predictor_cnn_out_channels:
- 16
- 32
- 64
predictor_cnn_kernel_size:
- 10
- 6
- 4
predictor_cnn_stride:
- 5
- 3
- 2
predictor_cnn_padding:
- 0
- 0
- 0
predictor_cnn_use_batchnorm: false
predictor_cnn_use_maxpool: false
predictor_cnn_use_spatial_softmax: true
predictor_cnn_spatial_softmax_num_keypoints: 32
predictor_mlp_hidden_sizes:
- 512
- 512
predictor_activation: ReLU
target_cnn_out_channels:
- 16
- 32
- 64
target_cnn_kernel_size:
- 10
- 6
- 4
target_cnn_stride:
- 5
- 3
- 2
target_cnn_padding:
- 0
- 0
- 0
target_cnn_use_batchnorm: false
target_cnn_use_maxpool: false
target_cnn_use_spatial_softmax: true
target_cnn_spatial_softmax_num_keypoints: 32
target_mlp_hidden_sizes:
- 512
- 512
target_activation: ReLU
dim_output: 512