File size: 2,434 Bytes
d76ccda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
env:
name: none
resume: false
device: cuda:1
use_amp: false
seed: 1000
dataset_repo_id: iantc104/rpl_real_peg_in_hole
video_backend: pyav
training:
offline_steps: 50000
num_workers: 4
batch_size: 8
eval_freq: ???
log_freq: 100
save_checkpoint: true
save_freq: 10000
online_steps: ???
online_rollout_n_episodes: 1
online_rollout_batch_size: 1
online_steps_between_rollouts: 1
online_sampling_ratio: 0.5
online_env_seed: null
online_buffer_capacity: null
online_buffer_seed_size: 0
do_online_rollout_async: false
image_transforms:
enable: false
max_num_transforms: 3
random_order: false
brightness:
weight: 1
min_max:
- 0.8
- 1.2
contrast:
weight: 1
min_max:
- 0.8
- 1.2
saturation:
weight: 1
min_max:
- 0.5
- 1.5
hue:
weight: 1
min_max:
- -0.05
- 0.05
sharpness:
weight: 1
min_max:
- 0.8
- 1.2
num_episodes: 40
lr: 1.0e-05
weight_decay: 0.0001
grad_clip_norm: 10
delta_timestamps:
observation.images.wrist:
- -2.0
- -1.0
- 0.0
observation.state:
- -2.0
- -1.0
- 0.0
eval:
n_episodes: 1
batch_size: 1
use_async_envs: false
wandb:
enable: true
disable_artifact: false
project: rpl_sim
notes: ''
fps: 1
policy:
name: rnd
n_obs_steps: 3
fps: ${fps}
input_shapes:
observation.images.wrist:
- 3
- 120
- 160
observation.state:
- 22
input_normalization_modes:
observation.images.wrist: mean_std
observation.state: mean_std
predictor_cnn_out_channels:
- 16
- 32
- 64
predictor_cnn_kernel_size:
- 10
- 6
- 4
predictor_cnn_stride:
- 5
- 3
- 2
predictor_cnn_padding:
- 0
- 0
- 0
predictor_cnn_use_batchnorm: false
predictor_cnn_use_maxpool: false
predictor_cnn_use_spatial_softmax: true
predictor_cnn_spatial_softmax_num_keypoints: 32
predictor_mlp_hidden_sizes:
- 512
- 512
predictor_activation: ReLU
target_cnn_out_channels:
- 16
- 32
- 64
target_cnn_kernel_size:
- 10
- 6
- 4
target_cnn_stride:
- 5
- 3
- 2
target_cnn_padding:
- 0
- 0
- 0
target_cnn_use_batchnorm: false
target_cnn_use_maxpool: false
target_cnn_use_spatial_softmax: true
target_cnn_spatial_softmax_num_keypoints: 32
target_mlp_hidden_sizes:
- 512
- 512
target_activation: ReLU
dim_output: 512
|