File size: 2,434 Bytes
d76ccda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
env:
  name: none
resume: false
device: cuda:1
use_amp: false
seed: 1000
dataset_repo_id: iantc104/rpl_real_peg_in_hole
video_backend: pyav
training:
  offline_steps: 50000
  num_workers: 4
  batch_size: 8
  eval_freq: ???
  log_freq: 100
  save_checkpoint: true
  save_freq: 10000
  online_steps: ???
  online_rollout_n_episodes: 1
  online_rollout_batch_size: 1
  online_steps_between_rollouts: 1
  online_sampling_ratio: 0.5
  online_env_seed: null
  online_buffer_capacity: null
  online_buffer_seed_size: 0
  do_online_rollout_async: false
  image_transforms:
    enable: false
    max_num_transforms: 3
    random_order: false
    brightness:
      weight: 1
      min_max:
      - 0.8
      - 1.2
    contrast:
      weight: 1
      min_max:
      - 0.8
      - 1.2
    saturation:
      weight: 1
      min_max:
      - 0.5
      - 1.5
    hue:
      weight: 1
      min_max:
      - -0.05
      - 0.05
    sharpness:
      weight: 1
      min_max:
      - 0.8
      - 1.2
  num_episodes: 40
  lr: 1.0e-05
  weight_decay: 0.0001
  grad_clip_norm: 10
  delta_timestamps:
    observation.images.wrist:
    - -2.0
    - -1.0
    - 0.0
    observation.state:
    - -2.0
    - -1.0
    - 0.0
eval:
  n_episodes: 1
  batch_size: 1
  use_async_envs: false
wandb:
  enable: true
  disable_artifact: false
  project: rpl_sim
  notes: ''
fps: 1
policy:
  name: rnd
  n_obs_steps: 3
  fps: ${fps}
  input_shapes:
    observation.images.wrist:
    - 3
    - 120
    - 160
    observation.state:
    - 22
  input_normalization_modes:
    observation.images.wrist: mean_std
    observation.state: mean_std
  predictor_cnn_out_channels:
  - 16
  - 32
  - 64
  predictor_cnn_kernel_size:
  - 10
  - 6
  - 4
  predictor_cnn_stride:
  - 5
  - 3
  - 2
  predictor_cnn_padding:
  - 0
  - 0
  - 0
  predictor_cnn_use_batchnorm: false
  predictor_cnn_use_maxpool: false
  predictor_cnn_use_spatial_softmax: true
  predictor_cnn_spatial_softmax_num_keypoints: 32
  predictor_mlp_hidden_sizes:
  - 512
  - 512
  predictor_activation: ReLU
  target_cnn_out_channels:
  - 16
  - 32
  - 64
  target_cnn_kernel_size:
  - 10
  - 6
  - 4
  target_cnn_stride:
  - 5
  - 3
  - 2
  target_cnn_padding:
  - 0
  - 0
  - 0
  target_cnn_use_batchnorm: false
  target_cnn_use_maxpool: false
  target_cnn_use_spatial_softmax: true
  target_cnn_spatial_softmax_num_keypoints: 32
  target_mlp_hidden_sizes:
  - 512
  - 512
  target_activation: ReLU
  dim_output: 512