hkivancoral's picture
End of training
258a445
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7683333333333333

smids_3x_deit_tiny_sgd_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6313
  • Accuracy: 0.7683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2114 1.0 225 1.2115 0.3783
1.0735 2.0 450 1.1384 0.3983
1.097 3.0 675 1.1002 0.4133
1.0469 4.0 900 1.0702 0.4533
1.0229 5.0 1125 1.0448 0.48
0.99 6.0 1350 1.0213 0.5
0.9781 7.0 1575 0.9993 0.5117
0.9907 8.0 1800 0.9784 0.54
0.927 9.0 2025 0.9582 0.545
0.8847 10.0 2250 0.9391 0.5583
0.9329 11.0 2475 0.9207 0.5733
0.8984 12.0 2700 0.9031 0.59
0.8494 13.0 2925 0.8859 0.605
0.8194 14.0 3150 0.8694 0.6183
0.7869 15.0 3375 0.8536 0.6283
0.8309 16.0 3600 0.8389 0.635
0.7966 17.0 3825 0.8246 0.64
0.8108 18.0 4050 0.8113 0.64
0.801 19.0 4275 0.7985 0.6533
0.771 20.0 4500 0.7864 0.66
0.7097 21.0 4725 0.7747 0.67
0.7109 22.0 4950 0.7636 0.6767
0.7079 23.0 5175 0.7529 0.6867
0.7294 24.0 5400 0.7431 0.69
0.7458 25.0 5625 0.7335 0.6883
0.6793 26.0 5850 0.7246 0.6917
0.6665 27.0 6075 0.7159 0.7017
0.6522 28.0 6300 0.7080 0.7083
0.7013 29.0 6525 0.7004 0.715
0.6636 30.0 6750 0.6932 0.7183
0.6224 31.0 6975 0.6867 0.72
0.6822 32.0 7200 0.6803 0.725
0.6885 33.0 7425 0.6745 0.7283
0.6623 34.0 7650 0.6692 0.7333
0.6059 35.0 7875 0.6642 0.735
0.6546 36.0 8100 0.6598 0.7417
0.6233 37.0 8325 0.6556 0.7433
0.6474 38.0 8550 0.6519 0.7467
0.606 39.0 8775 0.6483 0.75
0.6243 40.0 9000 0.6453 0.755
0.6167 41.0 9225 0.6425 0.7567
0.6518 42.0 9450 0.6401 0.7617
0.5844 43.0 9675 0.6380 0.7633
0.6425 44.0 9900 0.6361 0.7633
0.6354 45.0 10125 0.6346 0.7633
0.5465 46.0 10350 0.6333 0.765
0.6036 47.0 10575 0.6324 0.7667
0.5553 48.0 10800 0.6318 0.7683
0.6342 49.0 11025 0.6314 0.7683
0.5635 50.0 11250 0.6313 0.7683

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2