--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_tiny_sgd_0001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7683333333333333 --- # smids_3x_deit_tiny_sgd_0001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6313 - Accuracy: 0.7683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2114 | 1.0 | 225 | 1.2115 | 0.3783 | | 1.0735 | 2.0 | 450 | 1.1384 | 0.3983 | | 1.097 | 3.0 | 675 | 1.1002 | 0.4133 | | 1.0469 | 4.0 | 900 | 1.0702 | 0.4533 | | 1.0229 | 5.0 | 1125 | 1.0448 | 0.48 | | 0.99 | 6.0 | 1350 | 1.0213 | 0.5 | | 0.9781 | 7.0 | 1575 | 0.9993 | 0.5117 | | 0.9907 | 8.0 | 1800 | 0.9784 | 0.54 | | 0.927 | 9.0 | 2025 | 0.9582 | 0.545 | | 0.8847 | 10.0 | 2250 | 0.9391 | 0.5583 | | 0.9329 | 11.0 | 2475 | 0.9207 | 0.5733 | | 0.8984 | 12.0 | 2700 | 0.9031 | 0.59 | | 0.8494 | 13.0 | 2925 | 0.8859 | 0.605 | | 0.8194 | 14.0 | 3150 | 0.8694 | 0.6183 | | 0.7869 | 15.0 | 3375 | 0.8536 | 0.6283 | | 0.8309 | 16.0 | 3600 | 0.8389 | 0.635 | | 0.7966 | 17.0 | 3825 | 0.8246 | 0.64 | | 0.8108 | 18.0 | 4050 | 0.8113 | 0.64 | | 0.801 | 19.0 | 4275 | 0.7985 | 0.6533 | | 0.771 | 20.0 | 4500 | 0.7864 | 0.66 | | 0.7097 | 21.0 | 4725 | 0.7747 | 0.67 | | 0.7109 | 22.0 | 4950 | 0.7636 | 0.6767 | | 0.7079 | 23.0 | 5175 | 0.7529 | 0.6867 | | 0.7294 | 24.0 | 5400 | 0.7431 | 0.69 | | 0.7458 | 25.0 | 5625 | 0.7335 | 0.6883 | | 0.6793 | 26.0 | 5850 | 0.7246 | 0.6917 | | 0.6665 | 27.0 | 6075 | 0.7159 | 0.7017 | | 0.6522 | 28.0 | 6300 | 0.7080 | 0.7083 | | 0.7013 | 29.0 | 6525 | 0.7004 | 0.715 | | 0.6636 | 30.0 | 6750 | 0.6932 | 0.7183 | | 0.6224 | 31.0 | 6975 | 0.6867 | 0.72 | | 0.6822 | 32.0 | 7200 | 0.6803 | 0.725 | | 0.6885 | 33.0 | 7425 | 0.6745 | 0.7283 | | 0.6623 | 34.0 | 7650 | 0.6692 | 0.7333 | | 0.6059 | 35.0 | 7875 | 0.6642 | 0.735 | | 0.6546 | 36.0 | 8100 | 0.6598 | 0.7417 | | 0.6233 | 37.0 | 8325 | 0.6556 | 0.7433 | | 0.6474 | 38.0 | 8550 | 0.6519 | 0.7467 | | 0.606 | 39.0 | 8775 | 0.6483 | 0.75 | | 0.6243 | 40.0 | 9000 | 0.6453 | 0.755 | | 0.6167 | 41.0 | 9225 | 0.6425 | 0.7567 | | 0.6518 | 42.0 | 9450 | 0.6401 | 0.7617 | | 0.5844 | 43.0 | 9675 | 0.6380 | 0.7633 | | 0.6425 | 44.0 | 9900 | 0.6361 | 0.7633 | | 0.6354 | 45.0 | 10125 | 0.6346 | 0.7633 | | 0.5465 | 46.0 | 10350 | 0.6333 | 0.765 | | 0.6036 | 47.0 | 10575 | 0.6324 | 0.7667 | | 0.5553 | 48.0 | 10800 | 0.6318 | 0.7683 | | 0.6342 | 49.0 | 11025 | 0.6314 | 0.7683 | | 0.5635 | 50.0 | 11250 | 0.6313 | 0.7683 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2