hkivancoral's picture
End of training
6c9cdc8
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_3x_deit_tiny_adamax_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9948
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.542 1.0 225 0.4548 0.81
0.3403 2.0 450 0.3948 0.8633
0.3018 3.0 675 0.3258 0.88
0.2181 4.0 900 0.3725 0.8583
0.2784 5.0 1125 0.3487 0.8667
0.2253 6.0 1350 0.3694 0.87
0.1182 7.0 1575 0.4281 0.8683
0.1479 8.0 1800 0.4669 0.8683
0.127 9.0 2025 0.3858 0.88
0.1437 10.0 2250 0.6727 0.825
0.1318 11.0 2475 0.5423 0.8583
0.1039 12.0 2700 0.5755 0.8717
0.0315 13.0 2925 0.6762 0.8633
0.0565 14.0 3150 0.6056 0.8833
0.0169 15.0 3375 0.6739 0.8667
0.0394 16.0 3600 0.7747 0.87
0.051 17.0 3825 0.7121 0.8817
0.0214 18.0 4050 0.7547 0.88
0.0367 19.0 4275 0.7020 0.8583
0.0574 20.0 4500 0.7090 0.8783
0.016 21.0 4725 0.8561 0.87
0.0011 22.0 4950 0.6767 0.8783
0.0009 23.0 5175 0.6981 0.89
0.0024 24.0 5400 0.8528 0.8717
0.0185 25.0 5625 0.7739 0.8833
0.0018 26.0 5850 0.9050 0.875
0.0011 27.0 6075 0.8197 0.8767
0.0199 28.0 6300 0.8264 0.8833
0.0076 29.0 6525 0.8894 0.895
0.0073 30.0 6750 0.8362 0.9
0.004 31.0 6975 0.8565 0.9033
0.0 32.0 7200 0.9512 0.8967
0.0 33.0 7425 0.8488 0.895
0.0 34.0 7650 0.8884 0.9033
0.0 35.0 7875 1.0628 0.8917
0.0 36.0 8100 0.8726 0.9017
0.0029 37.0 8325 0.9056 0.9067
0.0 38.0 8550 0.9531 0.9033
0.0 39.0 8775 0.9541 0.905
0.0 40.0 9000 0.9488 0.905
0.0 41.0 9225 0.9370 0.9083
0.0 42.0 9450 0.9567 0.9067
0.0 43.0 9675 0.9765 0.9033
0.0 44.0 9900 0.9911 0.9017
0.0 45.0 10125 0.9807 0.905
0.0 46.0 10350 0.9732 0.9083
0.0026 47.0 10575 0.9856 0.905
0.0 48.0 10800 0.9870 0.905
0.0 49.0 11025 0.9903 0.905
0.0 50.0 11250 0.9948 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2