metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_tiny_adamax_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.905
smids_3x_deit_tiny_adamax_001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9948
- Accuracy: 0.905
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.542 | 1.0 | 225 | 0.4548 | 0.81 |
0.3403 | 2.0 | 450 | 0.3948 | 0.8633 |
0.3018 | 3.0 | 675 | 0.3258 | 0.88 |
0.2181 | 4.0 | 900 | 0.3725 | 0.8583 |
0.2784 | 5.0 | 1125 | 0.3487 | 0.8667 |
0.2253 | 6.0 | 1350 | 0.3694 | 0.87 |
0.1182 | 7.0 | 1575 | 0.4281 | 0.8683 |
0.1479 | 8.0 | 1800 | 0.4669 | 0.8683 |
0.127 | 9.0 | 2025 | 0.3858 | 0.88 |
0.1437 | 10.0 | 2250 | 0.6727 | 0.825 |
0.1318 | 11.0 | 2475 | 0.5423 | 0.8583 |
0.1039 | 12.0 | 2700 | 0.5755 | 0.8717 |
0.0315 | 13.0 | 2925 | 0.6762 | 0.8633 |
0.0565 | 14.0 | 3150 | 0.6056 | 0.8833 |
0.0169 | 15.0 | 3375 | 0.6739 | 0.8667 |
0.0394 | 16.0 | 3600 | 0.7747 | 0.87 |
0.051 | 17.0 | 3825 | 0.7121 | 0.8817 |
0.0214 | 18.0 | 4050 | 0.7547 | 0.88 |
0.0367 | 19.0 | 4275 | 0.7020 | 0.8583 |
0.0574 | 20.0 | 4500 | 0.7090 | 0.8783 |
0.016 | 21.0 | 4725 | 0.8561 | 0.87 |
0.0011 | 22.0 | 4950 | 0.6767 | 0.8783 |
0.0009 | 23.0 | 5175 | 0.6981 | 0.89 |
0.0024 | 24.0 | 5400 | 0.8528 | 0.8717 |
0.0185 | 25.0 | 5625 | 0.7739 | 0.8833 |
0.0018 | 26.0 | 5850 | 0.9050 | 0.875 |
0.0011 | 27.0 | 6075 | 0.8197 | 0.8767 |
0.0199 | 28.0 | 6300 | 0.8264 | 0.8833 |
0.0076 | 29.0 | 6525 | 0.8894 | 0.895 |
0.0073 | 30.0 | 6750 | 0.8362 | 0.9 |
0.004 | 31.0 | 6975 | 0.8565 | 0.9033 |
0.0 | 32.0 | 7200 | 0.9512 | 0.8967 |
0.0 | 33.0 | 7425 | 0.8488 | 0.895 |
0.0 | 34.0 | 7650 | 0.8884 | 0.9033 |
0.0 | 35.0 | 7875 | 1.0628 | 0.8917 |
0.0 | 36.0 | 8100 | 0.8726 | 0.9017 |
0.0029 | 37.0 | 8325 | 0.9056 | 0.9067 |
0.0 | 38.0 | 8550 | 0.9531 | 0.9033 |
0.0 | 39.0 | 8775 | 0.9541 | 0.905 |
0.0 | 40.0 | 9000 | 0.9488 | 0.905 |
0.0 | 41.0 | 9225 | 0.9370 | 0.9083 |
0.0 | 42.0 | 9450 | 0.9567 | 0.9067 |
0.0 | 43.0 | 9675 | 0.9765 | 0.9033 |
0.0 | 44.0 | 9900 | 0.9911 | 0.9017 |
0.0 | 45.0 | 10125 | 0.9807 | 0.905 |
0.0 | 46.0 | 10350 | 0.9732 | 0.9083 |
0.0026 | 47.0 | 10575 | 0.9856 | 0.905 |
0.0 | 48.0 | 10800 | 0.9870 | 0.905 |
0.0 | 49.0 | 11025 | 0.9903 | 0.905 |
0.0 | 50.0 | 11250 | 0.9948 | 0.905 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2