--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_3x_deit_tiny_adamax_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.905 --- # smids_3x_deit_tiny_adamax_001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9948 - Accuracy: 0.905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.542 | 1.0 | 225 | 0.4548 | 0.81 | | 0.3403 | 2.0 | 450 | 0.3948 | 0.8633 | | 0.3018 | 3.0 | 675 | 0.3258 | 0.88 | | 0.2181 | 4.0 | 900 | 0.3725 | 0.8583 | | 0.2784 | 5.0 | 1125 | 0.3487 | 0.8667 | | 0.2253 | 6.0 | 1350 | 0.3694 | 0.87 | | 0.1182 | 7.0 | 1575 | 0.4281 | 0.8683 | | 0.1479 | 8.0 | 1800 | 0.4669 | 0.8683 | | 0.127 | 9.0 | 2025 | 0.3858 | 0.88 | | 0.1437 | 10.0 | 2250 | 0.6727 | 0.825 | | 0.1318 | 11.0 | 2475 | 0.5423 | 0.8583 | | 0.1039 | 12.0 | 2700 | 0.5755 | 0.8717 | | 0.0315 | 13.0 | 2925 | 0.6762 | 0.8633 | | 0.0565 | 14.0 | 3150 | 0.6056 | 0.8833 | | 0.0169 | 15.0 | 3375 | 0.6739 | 0.8667 | | 0.0394 | 16.0 | 3600 | 0.7747 | 0.87 | | 0.051 | 17.0 | 3825 | 0.7121 | 0.8817 | | 0.0214 | 18.0 | 4050 | 0.7547 | 0.88 | | 0.0367 | 19.0 | 4275 | 0.7020 | 0.8583 | | 0.0574 | 20.0 | 4500 | 0.7090 | 0.8783 | | 0.016 | 21.0 | 4725 | 0.8561 | 0.87 | | 0.0011 | 22.0 | 4950 | 0.6767 | 0.8783 | | 0.0009 | 23.0 | 5175 | 0.6981 | 0.89 | | 0.0024 | 24.0 | 5400 | 0.8528 | 0.8717 | | 0.0185 | 25.0 | 5625 | 0.7739 | 0.8833 | | 0.0018 | 26.0 | 5850 | 0.9050 | 0.875 | | 0.0011 | 27.0 | 6075 | 0.8197 | 0.8767 | | 0.0199 | 28.0 | 6300 | 0.8264 | 0.8833 | | 0.0076 | 29.0 | 6525 | 0.8894 | 0.895 | | 0.0073 | 30.0 | 6750 | 0.8362 | 0.9 | | 0.004 | 31.0 | 6975 | 0.8565 | 0.9033 | | 0.0 | 32.0 | 7200 | 0.9512 | 0.8967 | | 0.0 | 33.0 | 7425 | 0.8488 | 0.895 | | 0.0 | 34.0 | 7650 | 0.8884 | 0.9033 | | 0.0 | 35.0 | 7875 | 1.0628 | 0.8917 | | 0.0 | 36.0 | 8100 | 0.8726 | 0.9017 | | 0.0029 | 37.0 | 8325 | 0.9056 | 0.9067 | | 0.0 | 38.0 | 8550 | 0.9531 | 0.9033 | | 0.0 | 39.0 | 8775 | 0.9541 | 0.905 | | 0.0 | 40.0 | 9000 | 0.9488 | 0.905 | | 0.0 | 41.0 | 9225 | 0.9370 | 0.9083 | | 0.0 | 42.0 | 9450 | 0.9567 | 0.9067 | | 0.0 | 43.0 | 9675 | 0.9765 | 0.9033 | | 0.0 | 44.0 | 9900 | 0.9911 | 0.9017 | | 0.0 | 45.0 | 10125 | 0.9807 | 0.905 | | 0.0 | 46.0 | 10350 | 0.9732 | 0.9083 | | 0.0026 | 47.0 | 10575 | 0.9856 | 0.905 | | 0.0 | 48.0 | 10800 | 0.9870 | 0.905 | | 0.0 | 49.0 | 11025 | 0.9903 | 0.905 | | 0.0 | 50.0 | 11250 | 0.9948 | 0.905 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2