hkivancoral's picture
End of training
c85f393
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8330550918196995

smids_1x_deit_tiny_sgd_001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4210
  • Accuracy: 0.8331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0811 1.0 76 1.0552 0.4808
0.945 2.0 152 0.9389 0.5793
0.8473 3.0 228 0.8609 0.6361
0.7999 4.0 304 0.8002 0.6561
0.6841 5.0 380 0.7558 0.6745
0.6329 6.0 456 0.7159 0.6895
0.6112 7.0 532 0.6747 0.7112
0.5645 8.0 608 0.6404 0.7195
0.5735 9.0 684 0.6198 0.7162
0.4448 10.0 760 0.5963 0.7362
0.4826 11.0 836 0.5775 0.7446
0.4884 12.0 912 0.5596 0.7546
0.419 13.0 988 0.5449 0.7629
0.4668 14.0 1064 0.5322 0.7713
0.3648 15.0 1140 0.5206 0.7780
0.435 16.0 1216 0.5120 0.7796
0.3985 17.0 1292 0.5037 0.7846
0.3605 18.0 1368 0.4957 0.7913
0.4239 19.0 1444 0.4882 0.7980
0.3983 20.0 1520 0.4823 0.7980
0.3854 21.0 1596 0.4759 0.8047
0.3728 22.0 1672 0.4711 0.8114
0.3399 23.0 1748 0.4667 0.8047
0.3623 24.0 1824 0.4632 0.8114
0.3017 25.0 1900 0.4575 0.8164
0.388 26.0 1976 0.4531 0.8147
0.2998 27.0 2052 0.4507 0.8147
0.3486 28.0 2128 0.4459 0.8180
0.2911 29.0 2204 0.4440 0.8214
0.2957 30.0 2280 0.4418 0.8230
0.3626 31.0 2356 0.4385 0.8264
0.2887 32.0 2432 0.4361 0.8214
0.3011 33.0 2508 0.4347 0.8247
0.3216 34.0 2584 0.4321 0.8230
0.4399 35.0 2660 0.4322 0.8314
0.3353 36.0 2736 0.4294 0.8297
0.3238 37.0 2812 0.4281 0.8280
0.3158 38.0 2888 0.4267 0.8297
0.316 39.0 2964 0.4263 0.8331
0.3078 40.0 3040 0.4248 0.8297
0.2618 41.0 3116 0.4247 0.8331
0.2721 42.0 3192 0.4237 0.8314
0.2921 43.0 3268 0.4227 0.8347
0.3099 44.0 3344 0.4222 0.8347
0.3081 45.0 3420 0.4219 0.8347
0.2984 46.0 3496 0.4214 0.8347
0.2929 47.0 3572 0.4213 0.8331
0.3041 48.0 3648 0.4210 0.8331
0.2743 49.0 3724 0.4210 0.8331
0.3962 50.0 3800 0.4210 0.8331

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0