--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_tiny_sgd_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8330550918196995 --- # smids_1x_deit_tiny_sgd_001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4210 - Accuracy: 0.8331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0811 | 1.0 | 76 | 1.0552 | 0.4808 | | 0.945 | 2.0 | 152 | 0.9389 | 0.5793 | | 0.8473 | 3.0 | 228 | 0.8609 | 0.6361 | | 0.7999 | 4.0 | 304 | 0.8002 | 0.6561 | | 0.6841 | 5.0 | 380 | 0.7558 | 0.6745 | | 0.6329 | 6.0 | 456 | 0.7159 | 0.6895 | | 0.6112 | 7.0 | 532 | 0.6747 | 0.7112 | | 0.5645 | 8.0 | 608 | 0.6404 | 0.7195 | | 0.5735 | 9.0 | 684 | 0.6198 | 0.7162 | | 0.4448 | 10.0 | 760 | 0.5963 | 0.7362 | | 0.4826 | 11.0 | 836 | 0.5775 | 0.7446 | | 0.4884 | 12.0 | 912 | 0.5596 | 0.7546 | | 0.419 | 13.0 | 988 | 0.5449 | 0.7629 | | 0.4668 | 14.0 | 1064 | 0.5322 | 0.7713 | | 0.3648 | 15.0 | 1140 | 0.5206 | 0.7780 | | 0.435 | 16.0 | 1216 | 0.5120 | 0.7796 | | 0.3985 | 17.0 | 1292 | 0.5037 | 0.7846 | | 0.3605 | 18.0 | 1368 | 0.4957 | 0.7913 | | 0.4239 | 19.0 | 1444 | 0.4882 | 0.7980 | | 0.3983 | 20.0 | 1520 | 0.4823 | 0.7980 | | 0.3854 | 21.0 | 1596 | 0.4759 | 0.8047 | | 0.3728 | 22.0 | 1672 | 0.4711 | 0.8114 | | 0.3399 | 23.0 | 1748 | 0.4667 | 0.8047 | | 0.3623 | 24.0 | 1824 | 0.4632 | 0.8114 | | 0.3017 | 25.0 | 1900 | 0.4575 | 0.8164 | | 0.388 | 26.0 | 1976 | 0.4531 | 0.8147 | | 0.2998 | 27.0 | 2052 | 0.4507 | 0.8147 | | 0.3486 | 28.0 | 2128 | 0.4459 | 0.8180 | | 0.2911 | 29.0 | 2204 | 0.4440 | 0.8214 | | 0.2957 | 30.0 | 2280 | 0.4418 | 0.8230 | | 0.3626 | 31.0 | 2356 | 0.4385 | 0.8264 | | 0.2887 | 32.0 | 2432 | 0.4361 | 0.8214 | | 0.3011 | 33.0 | 2508 | 0.4347 | 0.8247 | | 0.3216 | 34.0 | 2584 | 0.4321 | 0.8230 | | 0.4399 | 35.0 | 2660 | 0.4322 | 0.8314 | | 0.3353 | 36.0 | 2736 | 0.4294 | 0.8297 | | 0.3238 | 37.0 | 2812 | 0.4281 | 0.8280 | | 0.3158 | 38.0 | 2888 | 0.4267 | 0.8297 | | 0.316 | 39.0 | 2964 | 0.4263 | 0.8331 | | 0.3078 | 40.0 | 3040 | 0.4248 | 0.8297 | | 0.2618 | 41.0 | 3116 | 0.4247 | 0.8331 | | 0.2721 | 42.0 | 3192 | 0.4237 | 0.8314 | | 0.2921 | 43.0 | 3268 | 0.4227 | 0.8347 | | 0.3099 | 44.0 | 3344 | 0.4222 | 0.8347 | | 0.3081 | 45.0 | 3420 | 0.4219 | 0.8347 | | 0.2984 | 46.0 | 3496 | 0.4214 | 0.8347 | | 0.2929 | 47.0 | 3572 | 0.4213 | 0.8331 | | 0.3041 | 48.0 | 3648 | 0.4210 | 0.8331 | | 0.2743 | 49.0 | 3724 | 0.4210 | 0.8331 | | 0.3962 | 50.0 | 3800 | 0.4210 | 0.8331 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0