hkivancoral's picture
End of training
47a9ff0
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_sgd_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.657762938230384

smids_1x_deit_tiny_sgd_0001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8020
  • Accuracy: 0.6578

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.277 1.0 76 1.2939 0.2771
1.2116 2.0 152 1.2225 0.3172
1.1682 3.0 228 1.1693 0.3740
1.1189 4.0 304 1.1270 0.4073
1.0545 5.0 380 1.0950 0.4240
1.0649 6.0 456 1.0693 0.4574
1.0629 7.0 532 1.0475 0.4858
1.0345 8.0 608 1.0290 0.5142
1.012 9.0 684 1.0130 0.5392
0.9959 10.0 760 0.9988 0.5526
0.9617 11.0 836 0.9857 0.5626
1.0119 12.0 912 0.9733 0.5710
0.951 13.0 988 0.9618 0.5810
0.8944 14.0 1064 0.9511 0.5876
0.9729 15.0 1140 0.9409 0.5910
0.9626 16.0 1216 0.9311 0.5927
0.9103 17.0 1292 0.9219 0.6043
0.9088 18.0 1368 0.9131 0.6144
0.9045 19.0 1444 0.9046 0.6160
0.9231 20.0 1520 0.8968 0.6160
0.9054 21.0 1596 0.8893 0.6177
0.854 22.0 1672 0.8821 0.6227
0.8305 23.0 1748 0.8753 0.6294
0.8621 24.0 1824 0.8689 0.6311
0.8299 25.0 1900 0.8629 0.6327
0.8471 26.0 1976 0.8573 0.6344
0.817 27.0 2052 0.8521 0.6344
0.792 28.0 2128 0.8472 0.6361
0.8136 29.0 2204 0.8426 0.6377
0.7461 30.0 2280 0.8383 0.6411
0.8135 31.0 2356 0.8343 0.6427
0.7863 32.0 2432 0.8305 0.6461
0.7659 33.0 2508 0.8271 0.6494
0.8238 34.0 2584 0.8240 0.6528
0.8196 35.0 2660 0.8211 0.6528
0.7577 36.0 2736 0.8184 0.6528
0.8136 37.0 2812 0.8159 0.6528
0.7544 38.0 2888 0.8137 0.6561
0.7769 39.0 2964 0.8116 0.6561
0.8539 40.0 3040 0.8098 0.6561
0.7796 41.0 3116 0.8081 0.6544
0.765 42.0 3192 0.8067 0.6578
0.7732 43.0 3268 0.8054 0.6578
0.7585 44.0 3344 0.8044 0.6561
0.7325 45.0 3420 0.8036 0.6561
0.7699 46.0 3496 0.8029 0.6578
0.7818 47.0 3572 0.8024 0.6578
0.7946 48.0 3648 0.8021 0.6578
0.7345 49.0 3724 0.8020 0.6578
0.833 50.0 3800 0.8020 0.6578

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0