--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_tiny_sgd_0001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.657762938230384 --- # smids_1x_deit_tiny_sgd_0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8020 - Accuracy: 0.6578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.277 | 1.0 | 76 | 1.2939 | 0.2771 | | 1.2116 | 2.0 | 152 | 1.2225 | 0.3172 | | 1.1682 | 3.0 | 228 | 1.1693 | 0.3740 | | 1.1189 | 4.0 | 304 | 1.1270 | 0.4073 | | 1.0545 | 5.0 | 380 | 1.0950 | 0.4240 | | 1.0649 | 6.0 | 456 | 1.0693 | 0.4574 | | 1.0629 | 7.0 | 532 | 1.0475 | 0.4858 | | 1.0345 | 8.0 | 608 | 1.0290 | 0.5142 | | 1.012 | 9.0 | 684 | 1.0130 | 0.5392 | | 0.9959 | 10.0 | 760 | 0.9988 | 0.5526 | | 0.9617 | 11.0 | 836 | 0.9857 | 0.5626 | | 1.0119 | 12.0 | 912 | 0.9733 | 0.5710 | | 0.951 | 13.0 | 988 | 0.9618 | 0.5810 | | 0.8944 | 14.0 | 1064 | 0.9511 | 0.5876 | | 0.9729 | 15.0 | 1140 | 0.9409 | 0.5910 | | 0.9626 | 16.0 | 1216 | 0.9311 | 0.5927 | | 0.9103 | 17.0 | 1292 | 0.9219 | 0.6043 | | 0.9088 | 18.0 | 1368 | 0.9131 | 0.6144 | | 0.9045 | 19.0 | 1444 | 0.9046 | 0.6160 | | 0.9231 | 20.0 | 1520 | 0.8968 | 0.6160 | | 0.9054 | 21.0 | 1596 | 0.8893 | 0.6177 | | 0.854 | 22.0 | 1672 | 0.8821 | 0.6227 | | 0.8305 | 23.0 | 1748 | 0.8753 | 0.6294 | | 0.8621 | 24.0 | 1824 | 0.8689 | 0.6311 | | 0.8299 | 25.0 | 1900 | 0.8629 | 0.6327 | | 0.8471 | 26.0 | 1976 | 0.8573 | 0.6344 | | 0.817 | 27.0 | 2052 | 0.8521 | 0.6344 | | 0.792 | 28.0 | 2128 | 0.8472 | 0.6361 | | 0.8136 | 29.0 | 2204 | 0.8426 | 0.6377 | | 0.7461 | 30.0 | 2280 | 0.8383 | 0.6411 | | 0.8135 | 31.0 | 2356 | 0.8343 | 0.6427 | | 0.7863 | 32.0 | 2432 | 0.8305 | 0.6461 | | 0.7659 | 33.0 | 2508 | 0.8271 | 0.6494 | | 0.8238 | 34.0 | 2584 | 0.8240 | 0.6528 | | 0.8196 | 35.0 | 2660 | 0.8211 | 0.6528 | | 0.7577 | 36.0 | 2736 | 0.8184 | 0.6528 | | 0.8136 | 37.0 | 2812 | 0.8159 | 0.6528 | | 0.7544 | 38.0 | 2888 | 0.8137 | 0.6561 | | 0.7769 | 39.0 | 2964 | 0.8116 | 0.6561 | | 0.8539 | 40.0 | 3040 | 0.8098 | 0.6561 | | 0.7796 | 41.0 | 3116 | 0.8081 | 0.6544 | | 0.765 | 42.0 | 3192 | 0.8067 | 0.6578 | | 0.7732 | 43.0 | 3268 | 0.8054 | 0.6578 | | 0.7585 | 44.0 | 3344 | 0.8044 | 0.6561 | | 0.7325 | 45.0 | 3420 | 0.8036 | 0.6561 | | 0.7699 | 46.0 | 3496 | 0.8029 | 0.6578 | | 0.7818 | 47.0 | 3572 | 0.8024 | 0.6578 | | 0.7946 | 48.0 | 3648 | 0.8021 | 0.6578 | | 0.7345 | 49.0 | 3724 | 0.8020 | 0.6578 | | 0.833 | 50.0 | 3800 | 0.8020 | 0.6578 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0