hkivancoral's picture
End of training
88ba0e6
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8535773710482529

smids_1x_deit_tiny_adamax_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9040
  • Accuracy: 0.8536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7328 1.0 75 0.6585 0.7321
0.4509 2.0 150 0.4910 0.7903
0.3653 3.0 225 0.4211 0.8253
0.2986 4.0 300 0.4104 0.8353
0.2809 5.0 375 0.3830 0.8336
0.2519 6.0 450 0.3604 0.8502
0.2227 7.0 525 0.3681 0.8552
0.2223 8.0 600 0.3795 0.8419
0.1548 9.0 675 0.3730 0.8552
0.1857 10.0 750 0.3841 0.8602
0.1291 11.0 825 0.3934 0.8602
0.08 12.0 900 0.4226 0.8552
0.0831 13.0 975 0.4456 0.8486
0.0574 14.0 1050 0.5173 0.8436
0.0548 15.0 1125 0.4816 0.8602
0.051 16.0 1200 0.5112 0.8569
0.0349 17.0 1275 0.5235 0.8536
0.0192 18.0 1350 0.5709 0.8502
0.027 19.0 1425 0.6300 0.8453
0.0409 20.0 1500 0.6458 0.8502
0.009 21.0 1575 0.6679 0.8552
0.0172 22.0 1650 0.6845 0.8519
0.0015 23.0 1725 0.7310 0.8552
0.0059 24.0 1800 0.7388 0.8552
0.0018 25.0 1875 0.7514 0.8569
0.0008 26.0 1950 0.7646 0.8552
0.0024 27.0 2025 0.7898 0.8569
0.0185 28.0 2100 0.7969 0.8519
0.0012 29.0 2175 0.8175 0.8619
0.003 30.0 2250 0.8189 0.8536
0.0009 31.0 2325 0.8193 0.8569
0.0003 32.0 2400 0.8343 0.8602
0.0006 33.0 2475 0.8317 0.8586
0.0003 34.0 2550 0.8413 0.8536
0.026 35.0 2625 0.8594 0.8519
0.0003 36.0 2700 0.8747 0.8519
0.0002 37.0 2775 0.8582 0.8536
0.0003 38.0 2850 0.8927 0.8536
0.0067 39.0 2925 0.8896 0.8519
0.0002 40.0 3000 0.8915 0.8536
0.003 41.0 3075 0.8737 0.8586
0.0003 42.0 3150 0.9065 0.8519
0.0159 43.0 3225 0.8958 0.8552
0.0007 44.0 3300 0.8969 0.8519
0.0002 45.0 3375 0.9007 0.8519
0.0002 46.0 3450 0.9037 0.8536
0.007 47.0 3525 0.9095 0.8536
0.0002 48.0 3600 0.9035 0.8536
0.0057 49.0 3675 0.9034 0.8536
0.0097 50.0 3750 0.9040 0.8536

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0