metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_adamax_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8535773710482529
smids_1x_deit_tiny_adamax_00001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9040
- Accuracy: 0.8536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7328 | 1.0 | 75 | 0.6585 | 0.7321 |
0.4509 | 2.0 | 150 | 0.4910 | 0.7903 |
0.3653 | 3.0 | 225 | 0.4211 | 0.8253 |
0.2986 | 4.0 | 300 | 0.4104 | 0.8353 |
0.2809 | 5.0 | 375 | 0.3830 | 0.8336 |
0.2519 | 6.0 | 450 | 0.3604 | 0.8502 |
0.2227 | 7.0 | 525 | 0.3681 | 0.8552 |
0.2223 | 8.0 | 600 | 0.3795 | 0.8419 |
0.1548 | 9.0 | 675 | 0.3730 | 0.8552 |
0.1857 | 10.0 | 750 | 0.3841 | 0.8602 |
0.1291 | 11.0 | 825 | 0.3934 | 0.8602 |
0.08 | 12.0 | 900 | 0.4226 | 0.8552 |
0.0831 | 13.0 | 975 | 0.4456 | 0.8486 |
0.0574 | 14.0 | 1050 | 0.5173 | 0.8436 |
0.0548 | 15.0 | 1125 | 0.4816 | 0.8602 |
0.051 | 16.0 | 1200 | 0.5112 | 0.8569 |
0.0349 | 17.0 | 1275 | 0.5235 | 0.8536 |
0.0192 | 18.0 | 1350 | 0.5709 | 0.8502 |
0.027 | 19.0 | 1425 | 0.6300 | 0.8453 |
0.0409 | 20.0 | 1500 | 0.6458 | 0.8502 |
0.009 | 21.0 | 1575 | 0.6679 | 0.8552 |
0.0172 | 22.0 | 1650 | 0.6845 | 0.8519 |
0.0015 | 23.0 | 1725 | 0.7310 | 0.8552 |
0.0059 | 24.0 | 1800 | 0.7388 | 0.8552 |
0.0018 | 25.0 | 1875 | 0.7514 | 0.8569 |
0.0008 | 26.0 | 1950 | 0.7646 | 0.8552 |
0.0024 | 27.0 | 2025 | 0.7898 | 0.8569 |
0.0185 | 28.0 | 2100 | 0.7969 | 0.8519 |
0.0012 | 29.0 | 2175 | 0.8175 | 0.8619 |
0.003 | 30.0 | 2250 | 0.8189 | 0.8536 |
0.0009 | 31.0 | 2325 | 0.8193 | 0.8569 |
0.0003 | 32.0 | 2400 | 0.8343 | 0.8602 |
0.0006 | 33.0 | 2475 | 0.8317 | 0.8586 |
0.0003 | 34.0 | 2550 | 0.8413 | 0.8536 |
0.026 | 35.0 | 2625 | 0.8594 | 0.8519 |
0.0003 | 36.0 | 2700 | 0.8747 | 0.8519 |
0.0002 | 37.0 | 2775 | 0.8582 | 0.8536 |
0.0003 | 38.0 | 2850 | 0.8927 | 0.8536 |
0.0067 | 39.0 | 2925 | 0.8896 | 0.8519 |
0.0002 | 40.0 | 3000 | 0.8915 | 0.8536 |
0.003 | 41.0 | 3075 | 0.8737 | 0.8586 |
0.0003 | 42.0 | 3150 | 0.9065 | 0.8519 |
0.0159 | 43.0 | 3225 | 0.8958 | 0.8552 |
0.0007 | 44.0 | 3300 | 0.8969 | 0.8519 |
0.0002 | 45.0 | 3375 | 0.9007 | 0.8519 |
0.0002 | 46.0 | 3450 | 0.9037 | 0.8536 |
0.007 | 47.0 | 3525 | 0.9095 | 0.8536 |
0.0002 | 48.0 | 3600 | 0.9035 | 0.8536 |
0.0057 | 49.0 | 3675 | 0.9034 | 0.8536 |
0.0097 | 50.0 | 3750 | 0.9040 | 0.8536 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0