--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_tiny_adamax_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8535773710482529 --- # smids_1x_deit_tiny_adamax_00001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9040 - Accuracy: 0.8536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7328 | 1.0 | 75 | 0.6585 | 0.7321 | | 0.4509 | 2.0 | 150 | 0.4910 | 0.7903 | | 0.3653 | 3.0 | 225 | 0.4211 | 0.8253 | | 0.2986 | 4.0 | 300 | 0.4104 | 0.8353 | | 0.2809 | 5.0 | 375 | 0.3830 | 0.8336 | | 0.2519 | 6.0 | 450 | 0.3604 | 0.8502 | | 0.2227 | 7.0 | 525 | 0.3681 | 0.8552 | | 0.2223 | 8.0 | 600 | 0.3795 | 0.8419 | | 0.1548 | 9.0 | 675 | 0.3730 | 0.8552 | | 0.1857 | 10.0 | 750 | 0.3841 | 0.8602 | | 0.1291 | 11.0 | 825 | 0.3934 | 0.8602 | | 0.08 | 12.0 | 900 | 0.4226 | 0.8552 | | 0.0831 | 13.0 | 975 | 0.4456 | 0.8486 | | 0.0574 | 14.0 | 1050 | 0.5173 | 0.8436 | | 0.0548 | 15.0 | 1125 | 0.4816 | 0.8602 | | 0.051 | 16.0 | 1200 | 0.5112 | 0.8569 | | 0.0349 | 17.0 | 1275 | 0.5235 | 0.8536 | | 0.0192 | 18.0 | 1350 | 0.5709 | 0.8502 | | 0.027 | 19.0 | 1425 | 0.6300 | 0.8453 | | 0.0409 | 20.0 | 1500 | 0.6458 | 0.8502 | | 0.009 | 21.0 | 1575 | 0.6679 | 0.8552 | | 0.0172 | 22.0 | 1650 | 0.6845 | 0.8519 | | 0.0015 | 23.0 | 1725 | 0.7310 | 0.8552 | | 0.0059 | 24.0 | 1800 | 0.7388 | 0.8552 | | 0.0018 | 25.0 | 1875 | 0.7514 | 0.8569 | | 0.0008 | 26.0 | 1950 | 0.7646 | 0.8552 | | 0.0024 | 27.0 | 2025 | 0.7898 | 0.8569 | | 0.0185 | 28.0 | 2100 | 0.7969 | 0.8519 | | 0.0012 | 29.0 | 2175 | 0.8175 | 0.8619 | | 0.003 | 30.0 | 2250 | 0.8189 | 0.8536 | | 0.0009 | 31.0 | 2325 | 0.8193 | 0.8569 | | 0.0003 | 32.0 | 2400 | 0.8343 | 0.8602 | | 0.0006 | 33.0 | 2475 | 0.8317 | 0.8586 | | 0.0003 | 34.0 | 2550 | 0.8413 | 0.8536 | | 0.026 | 35.0 | 2625 | 0.8594 | 0.8519 | | 0.0003 | 36.0 | 2700 | 0.8747 | 0.8519 | | 0.0002 | 37.0 | 2775 | 0.8582 | 0.8536 | | 0.0003 | 38.0 | 2850 | 0.8927 | 0.8536 | | 0.0067 | 39.0 | 2925 | 0.8896 | 0.8519 | | 0.0002 | 40.0 | 3000 | 0.8915 | 0.8536 | | 0.003 | 41.0 | 3075 | 0.8737 | 0.8586 | | 0.0003 | 42.0 | 3150 | 0.9065 | 0.8519 | | 0.0159 | 43.0 | 3225 | 0.8958 | 0.8552 | | 0.0007 | 44.0 | 3300 | 0.8969 | 0.8519 | | 0.0002 | 45.0 | 3375 | 0.9007 | 0.8519 | | 0.0002 | 46.0 | 3450 | 0.9037 | 0.8536 | | 0.007 | 47.0 | 3525 | 0.9095 | 0.8536 | | 0.0002 | 48.0 | 3600 | 0.9035 | 0.8536 | | 0.0057 | 49.0 | 3675 | 0.9034 | 0.8536 | | 0.0097 | 50.0 | 3750 | 0.9040 | 0.8536 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0