hkivancoral's picture
End of training
891ba53
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6976744186046512

hushem_5x_deit_tiny_rms_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9822
  • Accuracy: 0.6977

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9654 1.0 28 2.6283 0.2558
1.5373 2.0 56 2.1986 0.2558
1.4995 3.0 84 1.6042 0.2558
1.4355 4.0 112 1.6838 0.2558
1.4504 5.0 140 1.5958 0.2326
1.4097 6.0 168 1.4017 0.2791
1.4297 7.0 196 1.5664 0.2326
1.4137 8.0 224 1.4485 0.2558
1.3745 9.0 252 1.2801 0.4186
1.2697 10.0 280 1.2764 0.3256
1.1321 11.0 308 1.5227 0.3256
1.1096 12.0 336 1.2384 0.3953
1.0727 13.0 364 1.1395 0.4884
1.0037 14.0 392 1.3856 0.3953
1.0402 15.0 420 1.1134 0.5116
1.0378 16.0 448 1.2506 0.4419
0.958 17.0 476 1.1080 0.4651
0.9953 18.0 504 1.2467 0.4884
0.9958 19.0 532 1.0807 0.5814
0.9467 20.0 560 1.1055 0.4186
0.9535 21.0 588 1.1974 0.5116
0.9184 22.0 616 1.1307 0.4186
0.9252 23.0 644 1.0833 0.5116
0.8662 24.0 672 1.1623 0.5349
0.8421 25.0 700 0.9575 0.5814
0.8602 26.0 728 1.1189 0.5581
0.923 27.0 756 1.3369 0.5116
0.8226 28.0 784 1.0806 0.6279
0.8183 29.0 812 1.2385 0.4186
0.801 30.0 840 0.8599 0.6744
0.7516 31.0 868 1.3471 0.4884
0.7555 32.0 896 1.0726 0.5814
0.7219 33.0 924 0.8253 0.6977
0.7341 34.0 952 0.9501 0.6744
0.7645 35.0 980 0.9024 0.6512
0.6775 36.0 1008 0.6982 0.6977
0.6942 37.0 1036 0.8138 0.6744
0.6421 38.0 1064 1.1443 0.6279
0.6108 39.0 1092 0.7170 0.6977
0.7595 40.0 1120 0.7538 0.6744
0.6409 41.0 1148 1.2761 0.5581
0.6168 42.0 1176 1.0481 0.6279
0.5155 43.0 1204 0.7647 0.7209
0.5674 44.0 1232 0.9942 0.6744
0.5763 45.0 1260 0.8142 0.6977
0.4817 46.0 1288 0.8614 0.6977
0.4723 47.0 1316 1.0386 0.6512
0.4863 48.0 1344 0.9689 0.7209
0.4909 49.0 1372 0.9822 0.6977
0.4786 50.0 1400 0.9822 0.6977

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0