File size: 4,811 Bytes
891ba53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_rms_001_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6976744186046512
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_tiny_rms_001_fold3

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9822
- Accuracy: 0.6977

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9654        | 1.0   | 28   | 2.6283          | 0.2558   |
| 1.5373        | 2.0   | 56   | 2.1986          | 0.2558   |
| 1.4995        | 3.0   | 84   | 1.6042          | 0.2558   |
| 1.4355        | 4.0   | 112  | 1.6838          | 0.2558   |
| 1.4504        | 5.0   | 140  | 1.5958          | 0.2326   |
| 1.4097        | 6.0   | 168  | 1.4017          | 0.2791   |
| 1.4297        | 7.0   | 196  | 1.5664          | 0.2326   |
| 1.4137        | 8.0   | 224  | 1.4485          | 0.2558   |
| 1.3745        | 9.0   | 252  | 1.2801          | 0.4186   |
| 1.2697        | 10.0  | 280  | 1.2764          | 0.3256   |
| 1.1321        | 11.0  | 308  | 1.5227          | 0.3256   |
| 1.1096        | 12.0  | 336  | 1.2384          | 0.3953   |
| 1.0727        | 13.0  | 364  | 1.1395          | 0.4884   |
| 1.0037        | 14.0  | 392  | 1.3856          | 0.3953   |
| 1.0402        | 15.0  | 420  | 1.1134          | 0.5116   |
| 1.0378        | 16.0  | 448  | 1.2506          | 0.4419   |
| 0.958         | 17.0  | 476  | 1.1080          | 0.4651   |
| 0.9953        | 18.0  | 504  | 1.2467          | 0.4884   |
| 0.9958        | 19.0  | 532  | 1.0807          | 0.5814   |
| 0.9467        | 20.0  | 560  | 1.1055          | 0.4186   |
| 0.9535        | 21.0  | 588  | 1.1974          | 0.5116   |
| 0.9184        | 22.0  | 616  | 1.1307          | 0.4186   |
| 0.9252        | 23.0  | 644  | 1.0833          | 0.5116   |
| 0.8662        | 24.0  | 672  | 1.1623          | 0.5349   |
| 0.8421        | 25.0  | 700  | 0.9575          | 0.5814   |
| 0.8602        | 26.0  | 728  | 1.1189          | 0.5581   |
| 0.923         | 27.0  | 756  | 1.3369          | 0.5116   |
| 0.8226        | 28.0  | 784  | 1.0806          | 0.6279   |
| 0.8183        | 29.0  | 812  | 1.2385          | 0.4186   |
| 0.801         | 30.0  | 840  | 0.8599          | 0.6744   |
| 0.7516        | 31.0  | 868  | 1.3471          | 0.4884   |
| 0.7555        | 32.0  | 896  | 1.0726          | 0.5814   |
| 0.7219        | 33.0  | 924  | 0.8253          | 0.6977   |
| 0.7341        | 34.0  | 952  | 0.9501          | 0.6744   |
| 0.7645        | 35.0  | 980  | 0.9024          | 0.6512   |
| 0.6775        | 36.0  | 1008 | 0.6982          | 0.6977   |
| 0.6942        | 37.0  | 1036 | 0.8138          | 0.6744   |
| 0.6421        | 38.0  | 1064 | 1.1443          | 0.6279   |
| 0.6108        | 39.0  | 1092 | 0.7170          | 0.6977   |
| 0.7595        | 40.0  | 1120 | 0.7538          | 0.6744   |
| 0.6409        | 41.0  | 1148 | 1.2761          | 0.5581   |
| 0.6168        | 42.0  | 1176 | 1.0481          | 0.6279   |
| 0.5155        | 43.0  | 1204 | 0.7647          | 0.7209   |
| 0.5674        | 44.0  | 1232 | 0.9942          | 0.6744   |
| 0.5763        | 45.0  | 1260 | 0.8142          | 0.6977   |
| 0.4817        | 46.0  | 1288 | 0.8614          | 0.6977   |
| 0.4723        | 47.0  | 1316 | 1.0386          | 0.6512   |
| 0.4863        | 48.0  | 1344 | 0.9689          | 0.7209   |
| 0.4909        | 49.0  | 1372 | 0.9822          | 0.6977   |
| 0.4786        | 50.0  | 1400 | 0.9822          | 0.6977   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0