hkivancoral's picture
End of training
0af0502
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_sgd_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4523809523809524

hushem_1x_deit_tiny_sgd_001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2335
  • Accuracy: 0.4524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5918 0.2857
1.6404 2.0 12 1.5188 0.2857
1.6404 3.0 18 1.4665 0.2857
1.5241 4.0 24 1.4299 0.3333
1.4755 5.0 30 1.4106 0.3571
1.4755 6.0 36 1.3938 0.3095
1.4186 7.0 42 1.3803 0.2857
1.4186 8.0 48 1.3677 0.3810
1.3819 9.0 54 1.3558 0.3810
1.3541 10.0 60 1.3456 0.3810
1.3541 11.0 66 1.3370 0.3810
1.3363 12.0 72 1.3284 0.3810
1.3363 13.0 78 1.3193 0.3571
1.3168 14.0 84 1.3103 0.4048
1.2875 15.0 90 1.3032 0.4048
1.2875 16.0 96 1.2966 0.4048
1.2638 17.0 102 1.2902 0.4048
1.2638 18.0 108 1.2846 0.4048
1.2758 19.0 114 1.2805 0.4048
1.2611 20.0 120 1.2763 0.4048
1.2611 21.0 126 1.2724 0.4048
1.2411 22.0 132 1.2693 0.4048
1.2411 23.0 138 1.2666 0.4048
1.2357 24.0 144 1.2628 0.4048
1.231 25.0 150 1.2590 0.4048
1.231 26.0 156 1.2555 0.4048
1.2026 27.0 162 1.2531 0.4048
1.2026 28.0 168 1.2508 0.4048
1.2253 29.0 174 1.2482 0.4048
1.1949 30.0 180 1.2457 0.4048
1.1949 31.0 186 1.2436 0.4286
1.2025 32.0 192 1.2420 0.4286
1.2025 33.0 198 1.2406 0.4524
1.1709 34.0 204 1.2390 0.4524
1.1908 35.0 210 1.2376 0.4524
1.1908 36.0 216 1.2365 0.4524
1.1663 37.0 222 1.2358 0.4524
1.1663 38.0 228 1.2349 0.4524
1.1875 39.0 234 1.2342 0.4524
1.1799 40.0 240 1.2338 0.4524
1.1799 41.0 246 1.2336 0.4524
1.1658 42.0 252 1.2335 0.4524
1.1658 43.0 258 1.2335 0.4524
1.1875 44.0 264 1.2335 0.4524
1.1627 45.0 270 1.2335 0.4524
1.1627 46.0 276 1.2335 0.4524
1.1689 47.0 282 1.2335 0.4524
1.1689 48.0 288 1.2335 0.4524
1.1911 49.0 294 1.2335 0.4524
1.1557 50.0 300 1.2335 0.4524

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1