--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4523809523809524 --- # hushem_1x_deit_tiny_sgd_001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2335 - Accuracy: 0.4524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5918 | 0.2857 | | 1.6404 | 2.0 | 12 | 1.5188 | 0.2857 | | 1.6404 | 3.0 | 18 | 1.4665 | 0.2857 | | 1.5241 | 4.0 | 24 | 1.4299 | 0.3333 | | 1.4755 | 5.0 | 30 | 1.4106 | 0.3571 | | 1.4755 | 6.0 | 36 | 1.3938 | 0.3095 | | 1.4186 | 7.0 | 42 | 1.3803 | 0.2857 | | 1.4186 | 8.0 | 48 | 1.3677 | 0.3810 | | 1.3819 | 9.0 | 54 | 1.3558 | 0.3810 | | 1.3541 | 10.0 | 60 | 1.3456 | 0.3810 | | 1.3541 | 11.0 | 66 | 1.3370 | 0.3810 | | 1.3363 | 12.0 | 72 | 1.3284 | 0.3810 | | 1.3363 | 13.0 | 78 | 1.3193 | 0.3571 | | 1.3168 | 14.0 | 84 | 1.3103 | 0.4048 | | 1.2875 | 15.0 | 90 | 1.3032 | 0.4048 | | 1.2875 | 16.0 | 96 | 1.2966 | 0.4048 | | 1.2638 | 17.0 | 102 | 1.2902 | 0.4048 | | 1.2638 | 18.0 | 108 | 1.2846 | 0.4048 | | 1.2758 | 19.0 | 114 | 1.2805 | 0.4048 | | 1.2611 | 20.0 | 120 | 1.2763 | 0.4048 | | 1.2611 | 21.0 | 126 | 1.2724 | 0.4048 | | 1.2411 | 22.0 | 132 | 1.2693 | 0.4048 | | 1.2411 | 23.0 | 138 | 1.2666 | 0.4048 | | 1.2357 | 24.0 | 144 | 1.2628 | 0.4048 | | 1.231 | 25.0 | 150 | 1.2590 | 0.4048 | | 1.231 | 26.0 | 156 | 1.2555 | 0.4048 | | 1.2026 | 27.0 | 162 | 1.2531 | 0.4048 | | 1.2026 | 28.0 | 168 | 1.2508 | 0.4048 | | 1.2253 | 29.0 | 174 | 1.2482 | 0.4048 | | 1.1949 | 30.0 | 180 | 1.2457 | 0.4048 | | 1.1949 | 31.0 | 186 | 1.2436 | 0.4286 | | 1.2025 | 32.0 | 192 | 1.2420 | 0.4286 | | 1.2025 | 33.0 | 198 | 1.2406 | 0.4524 | | 1.1709 | 34.0 | 204 | 1.2390 | 0.4524 | | 1.1908 | 35.0 | 210 | 1.2376 | 0.4524 | | 1.1908 | 36.0 | 216 | 1.2365 | 0.4524 | | 1.1663 | 37.0 | 222 | 1.2358 | 0.4524 | | 1.1663 | 38.0 | 228 | 1.2349 | 0.4524 | | 1.1875 | 39.0 | 234 | 1.2342 | 0.4524 | | 1.1799 | 40.0 | 240 | 1.2338 | 0.4524 | | 1.1799 | 41.0 | 246 | 1.2336 | 0.4524 | | 1.1658 | 42.0 | 252 | 1.2335 | 0.4524 | | 1.1658 | 43.0 | 258 | 1.2335 | 0.4524 | | 1.1875 | 44.0 | 264 | 1.2335 | 0.4524 | | 1.1627 | 45.0 | 270 | 1.2335 | 0.4524 | | 1.1627 | 46.0 | 276 | 1.2335 | 0.4524 | | 1.1689 | 47.0 | 282 | 1.2335 | 0.4524 | | 1.1689 | 48.0 | 288 | 1.2335 | 0.4524 | | 1.1911 | 49.0 | 294 | 1.2335 | 0.4524 | | 1.1557 | 50.0 | 300 | 1.2335 | 0.4524 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1