hkivancoral's picture
End of training
57bb87b
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5555555555555556

hushem_1x_deit_tiny_rms_0001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1133
  • Accuracy: 0.5556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.9323 0.2444
2.0865 2.0 12 1.4427 0.2444
2.0865 3.0 18 1.4293 0.2444
1.4431 4.0 24 1.3952 0.4667
1.4003 5.0 30 1.2967 0.4
1.4003 6.0 36 1.4719 0.2444
1.3496 7.0 42 1.3224 0.3556
1.3496 8.0 48 1.4673 0.3778
1.2064 9.0 54 1.4551 0.2667
1.1859 10.0 60 1.3687 0.3111
1.1859 11.0 66 1.2313 0.4444
1.0817 12.0 72 1.1514 0.4444
1.0817 13.0 78 1.1701 0.4444
1.0144 14.0 84 1.2204 0.4222
0.8578 15.0 90 1.1603 0.4889
0.8578 16.0 96 1.0987 0.5111
0.8063 17.0 102 0.9277 0.5111
0.8063 18.0 108 1.2038 0.5333
0.601 19.0 114 0.9886 0.6
0.465 20.0 120 1.5667 0.5111
0.465 21.0 126 1.8238 0.4889
0.2956 22.0 132 1.6043 0.4222
0.2956 23.0 138 1.2746 0.4889
0.3513 24.0 144 1.6389 0.5556
0.2137 25.0 150 1.6350 0.4889
0.2137 26.0 156 1.5926 0.4667
0.191 27.0 162 1.8516 0.4889
0.191 28.0 168 2.3628 0.4889
0.0581 29.0 174 2.3998 0.4889
0.0517 30.0 180 2.3913 0.5333
0.0517 31.0 186 2.7108 0.5556
0.005 32.0 192 2.8104 0.5556
0.005 33.0 198 2.8829 0.5556
0.0008 34.0 204 2.9326 0.5333
0.0006 35.0 210 2.9793 0.5556
0.0006 36.0 216 3.0150 0.5556
0.0005 37.0 222 3.0520 0.5556
0.0005 38.0 228 3.0772 0.5556
0.0004 39.0 234 3.0948 0.5556
0.0004 40.0 240 3.1038 0.5556
0.0004 41.0 246 3.1116 0.5556
0.0004 42.0 252 3.1133 0.5556
0.0004 43.0 258 3.1133 0.5556
0.0004 44.0 264 3.1133 0.5556
0.0004 45.0 270 3.1133 0.5556
0.0004 46.0 276 3.1133 0.5556
0.0004 47.0 282 3.1133 0.5556
0.0004 48.0 288 3.1133 0.5556
0.0004 49.0 294 3.1133 0.5556
0.0004 50.0 300 3.1133 0.5556

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1