--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_0001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5555555555555556 --- # hushem_1x_deit_tiny_rms_0001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1133 - Accuracy: 0.5556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.9323 | 0.2444 | | 2.0865 | 2.0 | 12 | 1.4427 | 0.2444 | | 2.0865 | 3.0 | 18 | 1.4293 | 0.2444 | | 1.4431 | 4.0 | 24 | 1.3952 | 0.4667 | | 1.4003 | 5.0 | 30 | 1.2967 | 0.4 | | 1.4003 | 6.0 | 36 | 1.4719 | 0.2444 | | 1.3496 | 7.0 | 42 | 1.3224 | 0.3556 | | 1.3496 | 8.0 | 48 | 1.4673 | 0.3778 | | 1.2064 | 9.0 | 54 | 1.4551 | 0.2667 | | 1.1859 | 10.0 | 60 | 1.3687 | 0.3111 | | 1.1859 | 11.0 | 66 | 1.2313 | 0.4444 | | 1.0817 | 12.0 | 72 | 1.1514 | 0.4444 | | 1.0817 | 13.0 | 78 | 1.1701 | 0.4444 | | 1.0144 | 14.0 | 84 | 1.2204 | 0.4222 | | 0.8578 | 15.0 | 90 | 1.1603 | 0.4889 | | 0.8578 | 16.0 | 96 | 1.0987 | 0.5111 | | 0.8063 | 17.0 | 102 | 0.9277 | 0.5111 | | 0.8063 | 18.0 | 108 | 1.2038 | 0.5333 | | 0.601 | 19.0 | 114 | 0.9886 | 0.6 | | 0.465 | 20.0 | 120 | 1.5667 | 0.5111 | | 0.465 | 21.0 | 126 | 1.8238 | 0.4889 | | 0.2956 | 22.0 | 132 | 1.6043 | 0.4222 | | 0.2956 | 23.0 | 138 | 1.2746 | 0.4889 | | 0.3513 | 24.0 | 144 | 1.6389 | 0.5556 | | 0.2137 | 25.0 | 150 | 1.6350 | 0.4889 | | 0.2137 | 26.0 | 156 | 1.5926 | 0.4667 | | 0.191 | 27.0 | 162 | 1.8516 | 0.4889 | | 0.191 | 28.0 | 168 | 2.3628 | 0.4889 | | 0.0581 | 29.0 | 174 | 2.3998 | 0.4889 | | 0.0517 | 30.0 | 180 | 2.3913 | 0.5333 | | 0.0517 | 31.0 | 186 | 2.7108 | 0.5556 | | 0.005 | 32.0 | 192 | 2.8104 | 0.5556 | | 0.005 | 33.0 | 198 | 2.8829 | 0.5556 | | 0.0008 | 34.0 | 204 | 2.9326 | 0.5333 | | 0.0006 | 35.0 | 210 | 2.9793 | 0.5556 | | 0.0006 | 36.0 | 216 | 3.0150 | 0.5556 | | 0.0005 | 37.0 | 222 | 3.0520 | 0.5556 | | 0.0005 | 38.0 | 228 | 3.0772 | 0.5556 | | 0.0004 | 39.0 | 234 | 3.0948 | 0.5556 | | 0.0004 | 40.0 | 240 | 3.1038 | 0.5556 | | 0.0004 | 41.0 | 246 | 3.1116 | 0.5556 | | 0.0004 | 42.0 | 252 | 3.1133 | 0.5556 | | 0.0004 | 43.0 | 258 | 3.1133 | 0.5556 | | 0.0004 | 44.0 | 264 | 3.1133 | 0.5556 | | 0.0004 | 45.0 | 270 | 3.1133 | 0.5556 | | 0.0004 | 46.0 | 276 | 3.1133 | 0.5556 | | 0.0004 | 47.0 | 282 | 3.1133 | 0.5556 | | 0.0004 | 48.0 | 288 | 3.1133 | 0.5556 | | 0.0004 | 49.0 | 294 | 3.1133 | 0.5556 | | 0.0004 | 50.0 | 300 | 3.1133 | 0.5556 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1