hkivancoral's picture
End of training
938c8f4
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8571428571428571

hushem_1x_deit_tiny_rms_00001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4549
  • Accuracy: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4075 0.2857
1.4145 2.0 12 1.3443 0.3571
1.4145 3.0 18 0.8612 0.6667
0.7818 4.0 24 0.9127 0.6190
0.3833 5.0 30 0.5998 0.8810
0.3833 6.0 36 0.5796 0.7857
0.1457 7.0 42 0.5756 0.8333
0.1457 8.0 48 0.5188 0.7857
0.0559 9.0 54 0.5146 0.8571
0.0198 10.0 60 0.5290 0.7857
0.0198 11.0 66 0.4513 0.8571
0.007 12.0 72 0.4696 0.8571
0.007 13.0 78 0.4668 0.8333
0.0039 14.0 84 0.4642 0.8333
0.0028 15.0 90 0.4519 0.8571
0.0028 16.0 96 0.4562 0.8333
0.0022 17.0 102 0.4543 0.8571
0.0022 18.0 108 0.4588 0.8571
0.0018 19.0 114 0.4546 0.8571
0.0016 20.0 120 0.4551 0.8333
0.0016 21.0 126 0.4570 0.8333
0.0013 22.0 132 0.4556 0.8333
0.0013 23.0 138 0.4547 0.8333
0.0012 24.0 144 0.4556 0.8571
0.0011 25.0 150 0.4547 0.8571
0.0011 26.0 156 0.4538 0.8571
0.001 27.0 162 0.4593 0.8333
0.001 28.0 168 0.4560 0.8333
0.0009 29.0 174 0.4555 0.8333
0.0009 30.0 180 0.4554 0.8333
0.0009 31.0 186 0.4563 0.8333
0.0008 32.0 192 0.4547 0.8571
0.0008 33.0 198 0.4545 0.8571
0.0008 34.0 204 0.4547 0.8571
0.0007 35.0 210 0.4541 0.8571
0.0007 36.0 216 0.4545 0.8571
0.0007 37.0 222 0.4550 0.8571
0.0007 38.0 228 0.4547 0.8571
0.0007 39.0 234 0.4549 0.8571
0.0007 40.0 240 0.4549 0.8571
0.0007 41.0 246 0.4549 0.8571
0.0007 42.0 252 0.4549 0.8571
0.0007 43.0 258 0.4549 0.8571
0.0007 44.0 264 0.4549 0.8571
0.0007 45.0 270 0.4549 0.8571
0.0007 46.0 276 0.4549 0.8571
0.0007 47.0 282 0.4549 0.8571
0.0007 48.0 288 0.4549 0.8571
0.0007 49.0 294 0.4549 0.8571
0.0007 50.0 300 0.4549 0.8571

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1