--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8571428571428571 --- # hushem_1x_deit_tiny_rms_00001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4549 - Accuracy: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4075 | 0.2857 | | 1.4145 | 2.0 | 12 | 1.3443 | 0.3571 | | 1.4145 | 3.0 | 18 | 0.8612 | 0.6667 | | 0.7818 | 4.0 | 24 | 0.9127 | 0.6190 | | 0.3833 | 5.0 | 30 | 0.5998 | 0.8810 | | 0.3833 | 6.0 | 36 | 0.5796 | 0.7857 | | 0.1457 | 7.0 | 42 | 0.5756 | 0.8333 | | 0.1457 | 8.0 | 48 | 0.5188 | 0.7857 | | 0.0559 | 9.0 | 54 | 0.5146 | 0.8571 | | 0.0198 | 10.0 | 60 | 0.5290 | 0.7857 | | 0.0198 | 11.0 | 66 | 0.4513 | 0.8571 | | 0.007 | 12.0 | 72 | 0.4696 | 0.8571 | | 0.007 | 13.0 | 78 | 0.4668 | 0.8333 | | 0.0039 | 14.0 | 84 | 0.4642 | 0.8333 | | 0.0028 | 15.0 | 90 | 0.4519 | 0.8571 | | 0.0028 | 16.0 | 96 | 0.4562 | 0.8333 | | 0.0022 | 17.0 | 102 | 0.4543 | 0.8571 | | 0.0022 | 18.0 | 108 | 0.4588 | 0.8571 | | 0.0018 | 19.0 | 114 | 0.4546 | 0.8571 | | 0.0016 | 20.0 | 120 | 0.4551 | 0.8333 | | 0.0016 | 21.0 | 126 | 0.4570 | 0.8333 | | 0.0013 | 22.0 | 132 | 0.4556 | 0.8333 | | 0.0013 | 23.0 | 138 | 0.4547 | 0.8333 | | 0.0012 | 24.0 | 144 | 0.4556 | 0.8571 | | 0.0011 | 25.0 | 150 | 0.4547 | 0.8571 | | 0.0011 | 26.0 | 156 | 0.4538 | 0.8571 | | 0.001 | 27.0 | 162 | 0.4593 | 0.8333 | | 0.001 | 28.0 | 168 | 0.4560 | 0.8333 | | 0.0009 | 29.0 | 174 | 0.4555 | 0.8333 | | 0.0009 | 30.0 | 180 | 0.4554 | 0.8333 | | 0.0009 | 31.0 | 186 | 0.4563 | 0.8333 | | 0.0008 | 32.0 | 192 | 0.4547 | 0.8571 | | 0.0008 | 33.0 | 198 | 0.4545 | 0.8571 | | 0.0008 | 34.0 | 204 | 0.4547 | 0.8571 | | 0.0007 | 35.0 | 210 | 0.4541 | 0.8571 | | 0.0007 | 36.0 | 216 | 0.4545 | 0.8571 | | 0.0007 | 37.0 | 222 | 0.4550 | 0.8571 | | 0.0007 | 38.0 | 228 | 0.4547 | 0.8571 | | 0.0007 | 39.0 | 234 | 0.4549 | 0.8571 | | 0.0007 | 40.0 | 240 | 0.4549 | 0.8571 | | 0.0007 | 41.0 | 246 | 0.4549 | 0.8571 | | 0.0007 | 42.0 | 252 | 0.4549 | 0.8571 | | 0.0007 | 43.0 | 258 | 0.4549 | 0.8571 | | 0.0007 | 44.0 | 264 | 0.4549 | 0.8571 | | 0.0007 | 45.0 | 270 | 0.4549 | 0.8571 | | 0.0007 | 46.0 | 276 | 0.4549 | 0.8571 | | 0.0007 | 47.0 | 282 | 0.4549 | 0.8571 | | 0.0007 | 48.0 | 288 | 0.4549 | 0.8571 | | 0.0007 | 49.0 | 294 | 0.4549 | 0.8571 | | 0.0007 | 50.0 | 300 | 0.4549 | 0.8571 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1