hkivancoral's picture
End of training
30c6692
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7674418604651163

hushem_1x_deit_tiny_rms_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6755
  • Accuracy: 0.7674

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.2450 0.3953
1.3266 2.0 12 1.0282 0.4884
1.3266 3.0 18 0.8766 0.6512
0.6113 4.0 24 0.8143 0.6279
0.301 5.0 30 0.9703 0.6047
0.301 6.0 36 0.7894 0.7209
0.1194 7.0 42 0.8712 0.6512
0.1194 8.0 48 0.7416 0.6744
0.0478 9.0 54 0.7289 0.6744
0.0192 10.0 60 0.6181 0.7209
0.0192 11.0 66 0.7194 0.6977
0.007 12.0 72 0.6519 0.6744
0.007 13.0 78 0.6428 0.7209
0.0038 14.0 84 0.6323 0.6977
0.0027 15.0 90 0.6303 0.7209
0.0027 16.0 96 0.6496 0.7209
0.0021 17.0 102 0.6367 0.7209
0.0021 18.0 108 0.6386 0.7209
0.0018 19.0 114 0.6562 0.7442
0.0015 20.0 120 0.6541 0.7442
0.0015 21.0 126 0.6493 0.7442
0.0014 22.0 132 0.6669 0.7442
0.0014 23.0 138 0.6543 0.7674
0.0012 24.0 144 0.6581 0.7442
0.0011 25.0 150 0.6534 0.7442
0.0011 26.0 156 0.6644 0.7442
0.001 27.0 162 0.6622 0.7674
0.001 28.0 168 0.6583 0.7442
0.001 29.0 174 0.6594 0.7674
0.0009 30.0 180 0.6672 0.7674
0.0009 31.0 186 0.6681 0.7674
0.0008 32.0 192 0.6656 0.7674
0.0008 33.0 198 0.6699 0.7674
0.0008 34.0 204 0.6718 0.7674
0.0008 35.0 210 0.6718 0.7674
0.0008 36.0 216 0.6735 0.7674
0.0008 37.0 222 0.6740 0.7674
0.0008 38.0 228 0.6754 0.7674
0.0007 39.0 234 0.6750 0.7674
0.0007 40.0 240 0.6751 0.7674
0.0007 41.0 246 0.6753 0.7674
0.0007 42.0 252 0.6755 0.7674
0.0007 43.0 258 0.6755 0.7674
0.0007 44.0 264 0.6755 0.7674
0.0007 45.0 270 0.6755 0.7674
0.0007 46.0 276 0.6755 0.7674
0.0007 47.0 282 0.6755 0.7674
0.0007 48.0 288 0.6755 0.7674
0.0007 49.0 294 0.6755 0.7674
0.0007 50.0 300 0.6755 0.7674

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1