--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7674418604651163 --- # hushem_1x_deit_tiny_rms_00001_fold3 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6755 - Accuracy: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.2450 | 0.3953 | | 1.3266 | 2.0 | 12 | 1.0282 | 0.4884 | | 1.3266 | 3.0 | 18 | 0.8766 | 0.6512 | | 0.6113 | 4.0 | 24 | 0.8143 | 0.6279 | | 0.301 | 5.0 | 30 | 0.9703 | 0.6047 | | 0.301 | 6.0 | 36 | 0.7894 | 0.7209 | | 0.1194 | 7.0 | 42 | 0.8712 | 0.6512 | | 0.1194 | 8.0 | 48 | 0.7416 | 0.6744 | | 0.0478 | 9.0 | 54 | 0.7289 | 0.6744 | | 0.0192 | 10.0 | 60 | 0.6181 | 0.7209 | | 0.0192 | 11.0 | 66 | 0.7194 | 0.6977 | | 0.007 | 12.0 | 72 | 0.6519 | 0.6744 | | 0.007 | 13.0 | 78 | 0.6428 | 0.7209 | | 0.0038 | 14.0 | 84 | 0.6323 | 0.6977 | | 0.0027 | 15.0 | 90 | 0.6303 | 0.7209 | | 0.0027 | 16.0 | 96 | 0.6496 | 0.7209 | | 0.0021 | 17.0 | 102 | 0.6367 | 0.7209 | | 0.0021 | 18.0 | 108 | 0.6386 | 0.7209 | | 0.0018 | 19.0 | 114 | 0.6562 | 0.7442 | | 0.0015 | 20.0 | 120 | 0.6541 | 0.7442 | | 0.0015 | 21.0 | 126 | 0.6493 | 0.7442 | | 0.0014 | 22.0 | 132 | 0.6669 | 0.7442 | | 0.0014 | 23.0 | 138 | 0.6543 | 0.7674 | | 0.0012 | 24.0 | 144 | 0.6581 | 0.7442 | | 0.0011 | 25.0 | 150 | 0.6534 | 0.7442 | | 0.0011 | 26.0 | 156 | 0.6644 | 0.7442 | | 0.001 | 27.0 | 162 | 0.6622 | 0.7674 | | 0.001 | 28.0 | 168 | 0.6583 | 0.7442 | | 0.001 | 29.0 | 174 | 0.6594 | 0.7674 | | 0.0009 | 30.0 | 180 | 0.6672 | 0.7674 | | 0.0009 | 31.0 | 186 | 0.6681 | 0.7674 | | 0.0008 | 32.0 | 192 | 0.6656 | 0.7674 | | 0.0008 | 33.0 | 198 | 0.6699 | 0.7674 | | 0.0008 | 34.0 | 204 | 0.6718 | 0.7674 | | 0.0008 | 35.0 | 210 | 0.6718 | 0.7674 | | 0.0008 | 36.0 | 216 | 0.6735 | 0.7674 | | 0.0008 | 37.0 | 222 | 0.6740 | 0.7674 | | 0.0008 | 38.0 | 228 | 0.6754 | 0.7674 | | 0.0007 | 39.0 | 234 | 0.6750 | 0.7674 | | 0.0007 | 40.0 | 240 | 0.6751 | 0.7674 | | 0.0007 | 41.0 | 246 | 0.6753 | 0.7674 | | 0.0007 | 42.0 | 252 | 0.6755 | 0.7674 | | 0.0007 | 43.0 | 258 | 0.6755 | 0.7674 | | 0.0007 | 44.0 | 264 | 0.6755 | 0.7674 | | 0.0007 | 45.0 | 270 | 0.6755 | 0.7674 | | 0.0007 | 46.0 | 276 | 0.6755 | 0.7674 | | 0.0007 | 47.0 | 282 | 0.6755 | 0.7674 | | 0.0007 | 48.0 | 288 | 0.6755 | 0.7674 | | 0.0007 | 49.0 | 294 | 0.6755 | 0.7674 | | 0.0007 | 50.0 | 300 | 0.6755 | 0.7674 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1