hkivancoral's picture
End of training
a1a8936
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_lr001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5333333333333333

hushem_1x_deit_tiny_adamax_lr001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4814
  • Accuracy: 0.5333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 4.5182 0.2444
No log 2.0 3 1.5416 0.2444
No log 2.67 4 1.5662 0.2667
No log 4.0 6 1.4453 0.2444
No log 4.67 7 1.4082 0.2444
No log 6.0 9 1.3188 0.4222
1.9051 6.67 10 1.3266 0.3556
1.9051 8.0 12 1.2375 0.4667
1.9051 8.67 13 1.3632 0.3778
1.9051 10.0 15 1.2064 0.4
1.9051 10.67 16 1.5392 0.2889
1.9051 12.0 18 1.1260 0.4889
1.9051 12.67 19 1.0999 0.4667
1.1808 14.0 21 1.2445 0.4222
1.1808 14.67 22 1.2069 0.4444
1.1808 16.0 24 1.0381 0.4889
1.1808 16.67 25 1.0992 0.5111
1.1808 18.0 27 1.1085 0.5333
1.1808 18.67 28 1.0609 0.5111
0.899 20.0 30 1.1754 0.5333
0.899 20.67 31 1.1214 0.5333
0.899 22.0 33 1.2625 0.4889
0.899 22.67 34 1.2586 0.5111
0.899 24.0 36 1.3423 0.4667
0.899 24.67 37 1.4290 0.4667
0.899 26.0 39 1.3722 0.5333
0.4924 26.67 40 1.4024 0.5111
0.4924 28.0 42 1.3396 0.5111
0.4924 28.67 43 1.4100 0.4444
0.4924 30.0 45 1.5561 0.4889
0.4924 30.67 46 1.5223 0.5556
0.4924 32.0 48 1.4581 0.5778
0.4924 32.67 49 1.4627 0.5556
0.1685 33.33 50 1.4814 0.5333

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1