File size: 3,892 Bytes
a1a8936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_adamax_lr001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5333333333333333
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_1x_deit_tiny_adamax_lr001_fold2

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4814
- Accuracy: 0.5333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 0.67  | 1    | 4.5182          | 0.2444   |
| No log        | 2.0   | 3    | 1.5416          | 0.2444   |
| No log        | 2.67  | 4    | 1.5662          | 0.2667   |
| No log        | 4.0   | 6    | 1.4453          | 0.2444   |
| No log        | 4.67  | 7    | 1.4082          | 0.2444   |
| No log        | 6.0   | 9    | 1.3188          | 0.4222   |
| 1.9051        | 6.67  | 10   | 1.3266          | 0.3556   |
| 1.9051        | 8.0   | 12   | 1.2375          | 0.4667   |
| 1.9051        | 8.67  | 13   | 1.3632          | 0.3778   |
| 1.9051        | 10.0  | 15   | 1.2064          | 0.4      |
| 1.9051        | 10.67 | 16   | 1.5392          | 0.2889   |
| 1.9051        | 12.0  | 18   | 1.1260          | 0.4889   |
| 1.9051        | 12.67 | 19   | 1.0999          | 0.4667   |
| 1.1808        | 14.0  | 21   | 1.2445          | 0.4222   |
| 1.1808        | 14.67 | 22   | 1.2069          | 0.4444   |
| 1.1808        | 16.0  | 24   | 1.0381          | 0.4889   |
| 1.1808        | 16.67 | 25   | 1.0992          | 0.5111   |
| 1.1808        | 18.0  | 27   | 1.1085          | 0.5333   |
| 1.1808        | 18.67 | 28   | 1.0609          | 0.5111   |
| 0.899         | 20.0  | 30   | 1.1754          | 0.5333   |
| 0.899         | 20.67 | 31   | 1.1214          | 0.5333   |
| 0.899         | 22.0  | 33   | 1.2625          | 0.4889   |
| 0.899         | 22.67 | 34   | 1.2586          | 0.5111   |
| 0.899         | 24.0  | 36   | 1.3423          | 0.4667   |
| 0.899         | 24.67 | 37   | 1.4290          | 0.4667   |
| 0.899         | 26.0  | 39   | 1.3722          | 0.5333   |
| 0.4924        | 26.67 | 40   | 1.4024          | 0.5111   |
| 0.4924        | 28.0  | 42   | 1.3396          | 0.5111   |
| 0.4924        | 28.67 | 43   | 1.4100          | 0.4444   |
| 0.4924        | 30.0  | 45   | 1.5561          | 0.4889   |
| 0.4924        | 30.67 | 46   | 1.5223          | 0.5556   |
| 0.4924        | 32.0  | 48   | 1.4581          | 0.5778   |
| 0.4924        | 32.67 | 49   | 1.4627          | 0.5556   |
| 0.1685        | 33.33 | 50   | 1.4814          | 0.5333   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1