File size: 3,892 Bytes
a1a8936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_adamax_lr001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5333333333333333
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_deit_tiny_adamax_lr001_fold2
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4814
- Accuracy: 0.5333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 4.5182 | 0.2444 |
| No log | 2.0 | 3 | 1.5416 | 0.2444 |
| No log | 2.67 | 4 | 1.5662 | 0.2667 |
| No log | 4.0 | 6 | 1.4453 | 0.2444 |
| No log | 4.67 | 7 | 1.4082 | 0.2444 |
| No log | 6.0 | 9 | 1.3188 | 0.4222 |
| 1.9051 | 6.67 | 10 | 1.3266 | 0.3556 |
| 1.9051 | 8.0 | 12 | 1.2375 | 0.4667 |
| 1.9051 | 8.67 | 13 | 1.3632 | 0.3778 |
| 1.9051 | 10.0 | 15 | 1.2064 | 0.4 |
| 1.9051 | 10.67 | 16 | 1.5392 | 0.2889 |
| 1.9051 | 12.0 | 18 | 1.1260 | 0.4889 |
| 1.9051 | 12.67 | 19 | 1.0999 | 0.4667 |
| 1.1808 | 14.0 | 21 | 1.2445 | 0.4222 |
| 1.1808 | 14.67 | 22 | 1.2069 | 0.4444 |
| 1.1808 | 16.0 | 24 | 1.0381 | 0.4889 |
| 1.1808 | 16.67 | 25 | 1.0992 | 0.5111 |
| 1.1808 | 18.0 | 27 | 1.1085 | 0.5333 |
| 1.1808 | 18.67 | 28 | 1.0609 | 0.5111 |
| 0.899 | 20.0 | 30 | 1.1754 | 0.5333 |
| 0.899 | 20.67 | 31 | 1.1214 | 0.5333 |
| 0.899 | 22.0 | 33 | 1.2625 | 0.4889 |
| 0.899 | 22.67 | 34 | 1.2586 | 0.5111 |
| 0.899 | 24.0 | 36 | 1.3423 | 0.4667 |
| 0.899 | 24.67 | 37 | 1.4290 | 0.4667 |
| 0.899 | 26.0 | 39 | 1.3722 | 0.5333 |
| 0.4924 | 26.67 | 40 | 1.4024 | 0.5111 |
| 0.4924 | 28.0 | 42 | 1.3396 | 0.5111 |
| 0.4924 | 28.67 | 43 | 1.4100 | 0.4444 |
| 0.4924 | 30.0 | 45 | 1.5561 | 0.4889 |
| 0.4924 | 30.67 | 46 | 1.5223 | 0.5556 |
| 0.4924 | 32.0 | 48 | 1.4581 | 0.5778 |
| 0.4924 | 32.67 | 49 | 1.4627 | 0.5556 |
| 0.1685 | 33.33 | 50 | 1.4814 | 0.5333 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|