hkivancoral's picture
End of training
97d6281
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_adamax_lr0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6585365853658537

hushem_1x_deit_tiny_adamax_lr0001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8924
  • Accuracy: 0.6585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.67 1 1.9330 0.2439
No log 2.0 3 1.4362 0.3659
No log 2.67 4 1.3806 0.3902
No log 4.0 6 1.3304 0.4634
No log 4.67 7 1.3017 0.4390
No log 6.0 9 1.1836 0.4878
1.2323 6.67 10 1.1688 0.5610
1.2323 8.0 12 1.1361 0.5366
1.2323 8.67 13 1.1291 0.5366
1.2323 10.0 15 1.0782 0.6098
1.2323 10.67 16 1.0358 0.6585
1.2323 12.0 18 1.0020 0.6098
1.2323 12.67 19 1.0059 0.6098
0.3527 14.0 21 0.9293 0.6098
0.3527 14.67 22 0.9162 0.6341
0.3527 16.0 24 0.9233 0.6098
0.3527 16.67 25 0.9213 0.6098
0.3527 18.0 27 0.9193 0.6098
0.3527 18.67 28 0.9345 0.6098
0.04 20.0 30 0.8872 0.6585
0.04 20.67 31 0.8549 0.6829
0.04 22.0 33 0.8221 0.6829
0.04 22.67 34 0.8117 0.7073
0.04 24.0 36 0.8041 0.7561
0.04 24.67 37 0.8128 0.7561
0.04 26.0 39 0.8413 0.6829
0.0062 26.67 40 0.8565 0.6585
0.0062 28.0 42 0.8789 0.6585
0.0062 28.67 43 0.8864 0.6585
0.0062 30.0 45 0.8920 0.6585
0.0062 30.67 46 0.8925 0.6585
0.0062 32.0 48 0.8929 0.6585
0.0062 32.67 49 0.8927 0.6585
0.0031 33.33 50 0.8924 0.6585

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1