--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_lr0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6585365853658537 --- # hushem_1x_deit_tiny_adamax_lr0001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co./facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8924 - Accuracy: 0.6585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.67 | 1 | 1.9330 | 0.2439 | | No log | 2.0 | 3 | 1.4362 | 0.3659 | | No log | 2.67 | 4 | 1.3806 | 0.3902 | | No log | 4.0 | 6 | 1.3304 | 0.4634 | | No log | 4.67 | 7 | 1.3017 | 0.4390 | | No log | 6.0 | 9 | 1.1836 | 0.4878 | | 1.2323 | 6.67 | 10 | 1.1688 | 0.5610 | | 1.2323 | 8.0 | 12 | 1.1361 | 0.5366 | | 1.2323 | 8.67 | 13 | 1.1291 | 0.5366 | | 1.2323 | 10.0 | 15 | 1.0782 | 0.6098 | | 1.2323 | 10.67 | 16 | 1.0358 | 0.6585 | | 1.2323 | 12.0 | 18 | 1.0020 | 0.6098 | | 1.2323 | 12.67 | 19 | 1.0059 | 0.6098 | | 0.3527 | 14.0 | 21 | 0.9293 | 0.6098 | | 0.3527 | 14.67 | 22 | 0.9162 | 0.6341 | | 0.3527 | 16.0 | 24 | 0.9233 | 0.6098 | | 0.3527 | 16.67 | 25 | 0.9213 | 0.6098 | | 0.3527 | 18.0 | 27 | 0.9193 | 0.6098 | | 0.3527 | 18.67 | 28 | 0.9345 | 0.6098 | | 0.04 | 20.0 | 30 | 0.8872 | 0.6585 | | 0.04 | 20.67 | 31 | 0.8549 | 0.6829 | | 0.04 | 22.0 | 33 | 0.8221 | 0.6829 | | 0.04 | 22.67 | 34 | 0.8117 | 0.7073 | | 0.04 | 24.0 | 36 | 0.8041 | 0.7561 | | 0.04 | 24.67 | 37 | 0.8128 | 0.7561 | | 0.04 | 26.0 | 39 | 0.8413 | 0.6829 | | 0.0062 | 26.67 | 40 | 0.8565 | 0.6585 | | 0.0062 | 28.0 | 42 | 0.8789 | 0.6585 | | 0.0062 | 28.67 | 43 | 0.8864 | 0.6585 | | 0.0062 | 30.0 | 45 | 0.8920 | 0.6585 | | 0.0062 | 30.67 | 46 | 0.8925 | 0.6585 | | 0.0062 | 32.0 | 48 | 0.8929 | 0.6585 | | 0.0062 | 32.67 | 49 | 0.8927 | 0.6585 | | 0.0031 | 33.33 | 50 | 0.8924 | 0.6585 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1