hanifnoerr's picture
Update README.md
06eaeaf
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: Kemenkeu-Sentiment-Classifier
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.66
- name: F1
type: f1
value: 0.6368
language:
- id
pipeline_tag: text-classification
widget:
- text: sudah beli makan buat sahur?
example_title: "contoh tidak relevan"
- text: Mengawal APBN, Indonesia Maju
example_title: "contoh kalimat"
---
# Kemenkeu-Sentiment-Classifier
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co./indobenchmark/indobert-base-p1) on the MoF-DAC Mini Challenge#1 dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.66
- F1: 0.6368
Leaderboard score:
- Public score: 0.63733
- Private score: 0.65733
## Model description & limitations
- This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif]
- only for specific cases related to the Ministry Of Finance Indonesia
## How to use
You can use this model directly with a pipeline
```python
pretrained_name = "hanifnoerr/Kemenkeu-Sentiment-Classifier"
class_model = pipeline(tokenizer=pretrained_name, model=pretrained_name)
test_data = "Mengawal APBN, Indonesia Maju"
class_model(test_data)
```
## Training and evaluation data
The following hyperparameters were used during training:
- learning_rate: 1e-05
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.0131 | 1.0 | 500 | 0.8590 | 0.644 | 0.5964 |
| 0.7133 | 2.0 | 1000 | 0.8639 | 0.63 | 0.5924 |
| 0.5261 | 3.0 | 1500 | 0.9002 | 0.66 | 0.6368 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3