|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: Kemenkeu-Sentiment-Classifier |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.66 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6368 |
|
language: |
|
- id |
|
pipeline_tag: text-classification |
|
widget: |
|
- text: sudah beli makan buat sahur? |
|
example_title: "contoh tidak relevan" |
|
- text: Mengawal APBN, Indonesia Maju |
|
example_title: "contoh kalimat" |
|
--- |
|
|
|
# Kemenkeu-Sentiment-Classifier |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co./indobenchmark/indobert-base-p1) on the MoF-DAC Mini Challenge#1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.66 |
|
- F1: 0.6368 |
|
|
|
Leaderboard score: |
|
- Public score: 0.63733 |
|
- Private score: 0.65733 |
|
|
|
## Model description & limitations |
|
|
|
- This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif] |
|
- only for specific cases related to the Ministry Of Finance Indonesia |
|
|
|
## How to use |
|
You can use this model directly with a pipeline |
|
|
|
```python |
|
pretrained_name = "hanifnoerr/Kemenkeu-Sentiment-Classifier" |
|
class_model = pipeline(tokenizer=pretrained_name, model=pretrained_name) |
|
|
|
test_data = "Mengawal APBN, Indonesia Maju" |
|
class_model(test_data) |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.0131 | 1.0 | 500 | 0.8590 | 0.644 | 0.5964 | |
|
| 0.7133 | 2.0 | 1000 | 0.8639 | 0.63 | 0.5924 | |
|
| 0.5261 | 3.0 | 1500 | 0.9002 | 0.66 | 0.6368 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |