hanifnoerr's picture
Update README.md
06eaeaf
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: Kemenkeu-Sentiment-Classifier
    results:
      - task:
          name: Text Classification
          type: text-classification
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.66
          - name: F1
            type: f1
            value: 0.6368
language:
  - id
pipeline_tag: text-classification
widget:
  - text: sudah beli makan buat sahur?
    example_title: contoh tidak relevan
  - text: Mengawal APBN, Indonesia Maju
    example_title: contoh kalimat

Kemenkeu-Sentiment-Classifier

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the MoF-DAC Mini Challenge#1 dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.66
  • F1: 0.6368

Leaderboard score:

  • Public score: 0.63733
  • Private score: 0.65733

Model description & limitations

  • This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif]
  • only for specific cases related to the Ministry Of Finance Indonesia

How to use

You can use this model directly with a pipeline

pretrained_name = "hanifnoerr/Kemenkeu-Sentiment-Classifier"
class_model = pipeline(tokenizer=pretrained_name, model=pretrained_name)

test_data = "Mengawal APBN, Indonesia Maju"
class_model(test_data)

Training and evaluation data

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.0131 1.0 500 0.8590 0.644 0.5964
0.7133 2.0 1000 0.8639 0.63 0.5924
0.5261 3.0 1500 0.9002 0.66 0.6368

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3