|
--- |
|
license: mit |
|
base_model: xlnet-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: UIT-VSFC-XLNet-CLSModel-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# UIT-VSFC-XLNet-CLSModel-v2 |
|
|
|
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3194 |
|
- Accuracy: 0.8880 |
|
- F1: 0.6798 |
|
- Precision: 0.7793 |
|
- Recall: 0.6634 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 357 | 0.3898 | 0.875 | 0.6225 | 0.7846 | 0.6229 | |
|
| 0.4955 | 2.0 | 714 | 0.3194 | 0.8880 | 0.6798 | 0.7793 | 0.6634 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|