metadata
license: mit
base_model: xlnet-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: UIT-VSFC-XLNet-CLSModel-v2
results: []
UIT-VSFC-XLNet-CLSModel-v2
This model is a fine-tuned version of xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3194
- Accuracy: 0.8880
- F1: 0.6798
- Precision: 0.7793
- Recall: 0.6634
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 357 | 0.3898 | 0.875 | 0.6225 | 0.7846 | 0.6229 |
0.4955 | 2.0 | 714 | 0.3194 | 0.8880 | 0.6798 | 0.7793 | 0.6634 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1