|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mobilebert_sa_GLUE_Experiment_mnli |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MNLI |
|
type: glue |
|
config: mnli |
|
split: validation_matched |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6110659072416599 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mobilebert_sa_GLUE_Experiment_mnli |
|
|
|
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8609 |
|
- Accuracy: 0.6111 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.9907 | 1.0 | 3068 | 0.9408 | 0.5485 | |
|
| 0.9094 | 2.0 | 6136 | 0.9065 | 0.5819 | |
|
| 0.8828 | 3.0 | 9204 | 0.8969 | 0.5874 | |
|
| 0.8627 | 4.0 | 12272 | 0.8821 | 0.5967 | |
|
| 0.8429 | 5.0 | 15340 | 0.8743 | 0.6003 | |
|
| 0.8207 | 6.0 | 18408 | 0.8663 | 0.6077 | |
|
| 0.7989 | 7.0 | 21476 | 0.8665 | 0.6100 | |
|
| 0.7789 | 8.0 | 24544 | 0.8751 | 0.6096 | |
|
| 0.7603 | 9.0 | 27612 | 0.8620 | 0.6139 | |
|
| 0.7425 | 10.0 | 30680 | 0.8813 | 0.6095 | |
|
| 0.7238 | 11.0 | 33748 | 0.8913 | 0.6142 | |
|
| 0.7063 | 12.0 | 36816 | 0.9026 | 0.6056 | |
|
| 0.6891 | 13.0 | 39884 | 0.9267 | 0.5976 | |
|
| 0.6721 | 14.0 | 42952 | 0.9072 | 0.6105 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |
|
|