gokuls commited on
Commit
5bb23c0
·
1 Parent(s): ec68fb2

End of training

Browse files
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
@@ -13,7 +15,7 @@ model-index:
13
  name: Text Classification
14
  type: text-classification
15
  dataset:
16
- name: glue
17
  type: glue
18
  config: mnli
19
  split: validation_matched
@@ -21,7 +23,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.6104941416199694
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,10 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  # mobilebert_sa_GLUE_Experiment_mnli
31
 
32
- This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the glue dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.9072
35
- - Accuracy: 0.6105
36
 
37
  ## Model description
38
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
  tags:
6
  - generated_from_trainer
 
15
  name: Text Classification
16
  type: text-classification
17
  dataset:
18
+ name: GLUE MNLI
19
  type: glue
20
  config: mnli
21
  split: validation_matched
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.6110659072416599
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # mobilebert_sa_GLUE_Experiment_mnli
33
 
34
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.8609
37
+ - Accuracy: 0.6111
38
 
39
  ## Model description
40
 
all_results.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "epoch_mm": 14.0,
4
+ "eval_accuracy": 0.6138563423331636,
5
+ "eval_accuracy_mm": 0.6110659072416599,
6
+ "eval_loss": 0.8619909882545471,
7
+ "eval_loss_mm": 0.8608574271202087,
8
+ "eval_runtime": 15.8,
9
+ "eval_runtime_mm": 15.8273,
10
+ "eval_samples": 9815,
11
+ "eval_samples_mm": 9832,
12
+ "eval_samples_per_second": 621.203,
13
+ "eval_samples_per_second_mm": 621.207,
14
+ "eval_steps_per_second": 4.873,
15
+ "eval_steps_per_second_mm": 4.865,
16
+ "train_loss": 0.7986461733901361,
17
+ "train_runtime": 29517.4796,
18
+ "train_samples": 392702,
19
+ "train_samples_per_second": 665.202,
20
+ "train_steps_per_second": 5.197
21
+ }
eval_results.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "epoch_mm": 14.0,
4
+ "eval_accuracy": 0.6138563423331636,
5
+ "eval_accuracy_mm": 0.6110659072416599,
6
+ "eval_loss": 0.8619909882545471,
7
+ "eval_loss_mm": 0.8608574271202087,
8
+ "eval_runtime": 15.8,
9
+ "eval_runtime_mm": 15.8273,
10
+ "eval_samples": 9815,
11
+ "eval_samples_mm": 9832,
12
+ "eval_samples_per_second": 621.203,
13
+ "eval_samples_per_second_mm": 621.207,
14
+ "eval_steps_per_second": 4.873,
15
+ "eval_steps_per_second_mm": 4.865
16
+ }
logs/events.out.tfevents.1674681334.garda.1933772.26 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57045e8034fcd5e9a1b67a1b18db392e641590c751eb94306ac547d9e47b8192
3
+ size 698
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "train_loss": 0.7986461733901361,
4
+ "train_runtime": 29517.4796,
5
+ "train_samples": 392702,
6
+ "train_samples_per_second": 665.202,
7
+ "train_steps_per_second": 5.197
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8619909882545471,
3
+ "best_model_checkpoint": "mobilebert_sa_GLUE_Experiment_mnli/checkpoint-27612",
4
+ "epoch": 14.0,
5
+ "global_step": 42952,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.0,
12
+ "learning_rate": 4.9e-05,
13
+ "loss": 0.9907,
14
+ "step": 3068
15
+ },
16
+ {
17
+ "epoch": 1.0,
18
+ "eval_accuracy": 0.5485481406011208,
19
+ "eval_loss": 0.9407809376716614,
20
+ "eval_runtime": 15.7503,
21
+ "eval_samples_per_second": 623.163,
22
+ "eval_steps_per_second": 4.889,
23
+ "step": 3068
24
+ },
25
+ {
26
+ "epoch": 2.0,
27
+ "learning_rate": 4.8000325945241203e-05,
28
+ "loss": 0.9094,
29
+ "step": 6136
30
+ },
31
+ {
32
+ "epoch": 2.0,
33
+ "eval_accuracy": 0.5818644931227712,
34
+ "eval_loss": 0.9065373539924622,
35
+ "eval_runtime": 15.8749,
36
+ "eval_samples_per_second": 618.272,
37
+ "eval_steps_per_second": 4.85,
38
+ "step": 6136
39
+ },
40
+ {
41
+ "epoch": 3.0,
42
+ "learning_rate": 4.70006518904824e-05,
43
+ "loss": 0.8828,
44
+ "step": 9204
45
+ },
46
+ {
47
+ "epoch": 3.0,
48
+ "eval_accuracy": 0.587366276107998,
49
+ "eval_loss": 0.8968958854675293,
50
+ "eval_runtime": 15.7921,
51
+ "eval_samples_per_second": 621.515,
52
+ "eval_steps_per_second": 4.876,
53
+ "step": 9204
54
+ },
55
+ {
56
+ "epoch": 4.0,
57
+ "learning_rate": 4.60013037809648e-05,
58
+ "loss": 0.8627,
59
+ "step": 12272
60
+ },
61
+ {
62
+ "epoch": 4.0,
63
+ "eval_accuracy": 0.5967396841569027,
64
+ "eval_loss": 0.882131040096283,
65
+ "eval_runtime": 15.8782,
66
+ "eval_samples_per_second": 618.145,
67
+ "eval_steps_per_second": 4.849,
68
+ "step": 12272
69
+ },
70
+ {
71
+ "epoch": 5.0,
72
+ "learning_rate": 4.5001629726206e-05,
73
+ "loss": 0.8429,
74
+ "step": 15340
75
+ },
76
+ {
77
+ "epoch": 5.0,
78
+ "eval_accuracy": 0.6003056546102904,
79
+ "eval_loss": 0.8742825984954834,
80
+ "eval_runtime": 15.8321,
81
+ "eval_samples_per_second": 619.944,
82
+ "eval_steps_per_second": 4.864,
83
+ "step": 15340
84
+ },
85
+ {
86
+ "epoch": 6.0,
87
+ "learning_rate": 4.40022816166884e-05,
88
+ "loss": 0.8207,
89
+ "step": 18408
90
+ },
91
+ {
92
+ "epoch": 6.0,
93
+ "eval_accuracy": 0.6077432501273561,
94
+ "eval_loss": 0.8663310408592224,
95
+ "eval_runtime": 15.7218,
96
+ "eval_samples_per_second": 624.293,
97
+ "eval_steps_per_second": 4.898,
98
+ "step": 18408
99
+ },
100
+ {
101
+ "epoch": 7.0,
102
+ "learning_rate": 4.30026075619296e-05,
103
+ "loss": 0.7989,
104
+ "step": 21476
105
+ },
106
+ {
107
+ "epoch": 7.0,
108
+ "eval_accuracy": 0.6099847172694854,
109
+ "eval_loss": 0.8664844632148743,
110
+ "eval_runtime": 15.7937,
111
+ "eval_samples_per_second": 621.449,
112
+ "eval_steps_per_second": 4.875,
113
+ "step": 21476
114
+ },
115
+ {
116
+ "epoch": 8.0,
117
+ "learning_rate": 4.2003259452412e-05,
118
+ "loss": 0.7789,
119
+ "step": 24544
120
+ },
121
+ {
122
+ "epoch": 8.0,
123
+ "eval_accuracy": 0.6095771777890984,
124
+ "eval_loss": 0.8751330971717834,
125
+ "eval_runtime": 15.8764,
126
+ "eval_samples_per_second": 618.214,
127
+ "eval_steps_per_second": 4.85,
128
+ "step": 24544
129
+ },
130
+ {
131
+ "epoch": 9.0,
132
+ "learning_rate": 4.100358539765319e-05,
133
+ "loss": 0.7603,
134
+ "step": 27612
135
+ },
136
+ {
137
+ "epoch": 9.0,
138
+ "eval_accuracy": 0.6138563423331636,
139
+ "eval_loss": 0.8619909882545471,
140
+ "eval_runtime": 15.8877,
141
+ "eval_samples_per_second": 617.774,
142
+ "eval_steps_per_second": 4.847,
143
+ "step": 27612
144
+ },
145
+ {
146
+ "epoch": 10.0,
147
+ "learning_rate": 4.000423728813559e-05,
148
+ "loss": 0.7425,
149
+ "step": 30680
150
+ },
151
+ {
152
+ "epoch": 10.0,
153
+ "eval_accuracy": 0.6094752929190015,
154
+ "eval_loss": 0.8813133835792542,
155
+ "eval_runtime": 15.7795,
156
+ "eval_samples_per_second": 622.011,
157
+ "eval_steps_per_second": 4.88,
158
+ "step": 30680
159
+ },
160
+ {
161
+ "epoch": 11.0,
162
+ "learning_rate": 3.9004563233376796e-05,
163
+ "loss": 0.7238,
164
+ "step": 33748
165
+ },
166
+ {
167
+ "epoch": 11.0,
168
+ "eval_accuracy": 0.6141619969434539,
169
+ "eval_loss": 0.8913043737411499,
170
+ "eval_runtime": 15.8959,
171
+ "eval_samples_per_second": 617.456,
172
+ "eval_steps_per_second": 4.844,
173
+ "step": 33748
174
+ },
175
+ {
176
+ "epoch": 12.0,
177
+ "learning_rate": 3.8005215123859196e-05,
178
+ "loss": 0.7063,
179
+ "step": 36816
180
+ },
181
+ {
182
+ "epoch": 12.0,
183
+ "eval_accuracy": 0.6056036678553235,
184
+ "eval_loss": 0.9025644063949585,
185
+ "eval_runtime": 15.8221,
186
+ "eval_samples_per_second": 620.334,
187
+ "eval_steps_per_second": 4.867,
188
+ "step": 36816
189
+ },
190
+ {
191
+ "epoch": 13.0,
192
+ "learning_rate": 3.7005541069100394e-05,
193
+ "loss": 0.6891,
194
+ "step": 39884
195
+ },
196
+ {
197
+ "epoch": 13.0,
198
+ "eval_accuracy": 0.5975547631176771,
199
+ "eval_loss": 0.9266977310180664,
200
+ "eval_runtime": 15.8778,
201
+ "eval_samples_per_second": 618.16,
202
+ "eval_steps_per_second": 4.85,
203
+ "step": 39884
204
+ },
205
+ {
206
+ "epoch": 14.0,
207
+ "learning_rate": 3.600586701434159e-05,
208
+ "loss": 0.6721,
209
+ "step": 42952
210
+ },
211
+ {
212
+ "epoch": 14.0,
213
+ "eval_accuracy": 0.6104941416199694,
214
+ "eval_loss": 0.9071937203407288,
215
+ "eval_runtime": 15.8196,
216
+ "eval_samples_per_second": 620.435,
217
+ "eval_steps_per_second": 4.867,
218
+ "step": 42952
219
+ },
220
+ {
221
+ "epoch": 14.0,
222
+ "step": 42952,
223
+ "total_flos": 1.7238466281812787e+17,
224
+ "train_loss": 0.7986461733901361,
225
+ "train_runtime": 29517.4796,
226
+ "train_samples_per_second": 665.202,
227
+ "train_steps_per_second": 5.197
228
+ }
229
+ ],
230
+ "max_steps": 153400,
231
+ "num_train_epochs": 50,
232
+ "total_flos": 1.7238466281812787e+17,
233
+ "trial_name": null,
234
+ "trial_params": null
235
+ }