gokuls commited on
Commit
ec68fb2
·
1 Parent(s): d544582

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: mobilebert_sa_GLUE_Experiment_mnli
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: mnli
19
+ split: validation_matched
20
+ args: mnli
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.6104941416199694
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # mobilebert_sa_GLUE_Experiment_mnli
31
+
32
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the glue dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.9072
35
+ - Accuracy: 0.6105
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 128
56
+ - eval_batch_size: 128
57
+ - seed: 10
58
+ - distributed_type: multi-GPU
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 50
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
68
+ | 0.9907 | 1.0 | 3068 | 0.9408 | 0.5485 |
69
+ | 0.9094 | 2.0 | 6136 | 0.9065 | 0.5819 |
70
+ | 0.8828 | 3.0 | 9204 | 0.8969 | 0.5874 |
71
+ | 0.8627 | 4.0 | 12272 | 0.8821 | 0.5967 |
72
+ | 0.8429 | 5.0 | 15340 | 0.8743 | 0.6003 |
73
+ | 0.8207 | 6.0 | 18408 | 0.8663 | 0.6077 |
74
+ | 0.7989 | 7.0 | 21476 | 0.8665 | 0.6100 |
75
+ | 0.7789 | 8.0 | 24544 | 0.8751 | 0.6096 |
76
+ | 0.7603 | 9.0 | 27612 | 0.8620 | 0.6139 |
77
+ | 0.7425 | 10.0 | 30680 | 0.8813 | 0.6095 |
78
+ | 0.7238 | 11.0 | 33748 | 0.8913 | 0.6142 |
79
+ | 0.7063 | 12.0 | 36816 | 0.9026 | 0.6056 |
80
+ | 0.6891 | 13.0 | 39884 | 0.9267 | 0.5976 |
81
+ | 0.6721 | 14.0 | 42952 | 0.9072 | 0.6105 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.26.0
87
+ - Pytorch 1.14.0a0+410ce96
88
+ - Datasets 2.8.0
89
+ - Tokenizers 0.13.2