gokuls's picture
End of training
c66e5fe
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MNLI
          type: glue
          config: mnli
          split: validation_matched
          args: mnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5949959316517494

mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2689
  • Accuracy: 0.5950

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6825 1.0 3068 1.4581 0.5256
1.4941 2.0 6136 1.3516 0.5680
1.4199 3.0 9204 1.3259 0.5712
1.3747 4.0 12272 1.3024 0.5856
1.34 5.0 15340 1.2875 0.5931
1.3087 6.0 18408 1.2730 0.5928
1.2769 7.0 21476 1.2845 0.5916
1.246 8.0 24544 1.2750 0.5965
1.2166 9.0 27612 1.2651 0.6020
1.1883 10.0 30680 1.2773 0.6043
1.1604 11.0 33748 1.2555 0.6011
1.1329 12.0 36816 1.2792 0.5991
1.1074 13.0 39884 1.2891 0.5986
1.0812 14.0 42952 1.2889 0.5947
1.0577 15.0 46020 1.2871 0.5970
1.0338 16.0 49088 1.3296 0.6026

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2