mobilebert_sa_GLUE_Experiment_logit_kd_mnli_128
This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MNLI dataset. It achieves the following results on the evaluation set:
- Loss: 1.2689
- Accuracy: 0.5950
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6825 | 1.0 | 3068 | 1.4581 | 0.5256 |
1.4941 | 2.0 | 6136 | 1.3516 | 0.5680 |
1.4199 | 3.0 | 9204 | 1.3259 | 0.5712 |
1.3747 | 4.0 | 12272 | 1.3024 | 0.5856 |
1.34 | 5.0 | 15340 | 1.2875 | 0.5931 |
1.3087 | 6.0 | 18408 | 1.2730 | 0.5928 |
1.2769 | 7.0 | 21476 | 1.2845 | 0.5916 |
1.246 | 8.0 | 24544 | 1.2750 | 0.5965 |
1.2166 | 9.0 | 27612 | 1.2651 | 0.6020 |
1.1883 | 10.0 | 30680 | 1.2773 | 0.6043 |
1.1604 | 11.0 | 33748 | 1.2555 | 0.6011 |
1.1329 | 12.0 | 36816 | 1.2792 | 0.5991 |
1.1074 | 13.0 | 39884 | 1.2891 | 0.5986 |
1.0812 | 14.0 | 42952 | 1.2889 | 0.5947 |
1.0577 | 15.0 | 46020 | 1.2871 | 0.5970 |
1.0338 | 16.0 | 49088 | 1.3296 | 0.6026 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.