gokuls's picture
End of training
631b362 verified
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-speech-commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: None
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8057553956834532

hubert-base-ls960-speech-commands

This model is a fine-tuned version of facebook/hubert-base-ls960 on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0829
  • Accuracy: 0.8058

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8285 1.0 824 1.9509 0.7167
0.5292 2.0 1648 1.3813 0.7909
0.3554 3.0 2472 1.1773 0.7941
0.2873 4.0 3296 1.2437 0.7981
0.2525 5.0 4120 1.2514 0.8004
0.2941 6.0 4944 1.2243 0.7995
0.1809 7.0 5768 1.1965 0.8008
0.2313 8.0 6592 1.0694 0.8022
0.1917 9.0 7416 1.0618 0.7995
0.1212 10.0 8240 1.0972 0.8026
0.185 11.0 9064 1.0868 0.8017
0.143 12.0 9888 1.1558 0.8031
0.2227 13.0 10712 1.0550 0.8040
0.1884 14.0 11536 1.0384 0.8022
0.1183 15.0 12360 1.0169 0.8035
0.1849 16.0 13184 1.0061 0.8035
0.141 17.0 14008 1.0337 0.8053
0.1328 18.0 14832 1.0829 0.8058
0.1238 19.0 15656 1.0576 0.8053
0.0932 20.0 16480 1.0641 0.8053

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1