--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: hubert-base-ls960-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.8057553956834532 --- # hubert-base-ls960-speech-commands This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co./facebook/hubert-base-ls960) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.0829 - Accuracy: 0.8058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.8285 | 1.0 | 824 | 1.9509 | 0.7167 | | 0.5292 | 2.0 | 1648 | 1.3813 | 0.7909 | | 0.3554 | 3.0 | 2472 | 1.1773 | 0.7941 | | 0.2873 | 4.0 | 3296 | 1.2437 | 0.7981 | | 0.2525 | 5.0 | 4120 | 1.2514 | 0.8004 | | 0.2941 | 6.0 | 4944 | 1.2243 | 0.7995 | | 0.1809 | 7.0 | 5768 | 1.1965 | 0.8008 | | 0.2313 | 8.0 | 6592 | 1.0694 | 0.8022 | | 0.1917 | 9.0 | 7416 | 1.0618 | 0.7995 | | 0.1212 | 10.0 | 8240 | 1.0972 | 0.8026 | | 0.185 | 11.0 | 9064 | 1.0868 | 0.8017 | | 0.143 | 12.0 | 9888 | 1.1558 | 0.8031 | | 0.2227 | 13.0 | 10712 | 1.0550 | 0.8040 | | 0.1884 | 14.0 | 11536 | 1.0384 | 0.8022 | | 0.1183 | 15.0 | 12360 | 1.0169 | 0.8035 | | 0.1849 | 16.0 | 13184 | 1.0061 | 0.8035 | | 0.141 | 17.0 | 14008 | 1.0337 | 0.8053 | | 0.1328 | 18.0 | 14832 | 1.0829 | 0.8058 | | 0.1238 | 19.0 | 15656 | 1.0576 | 0.8053 | | 0.0932 | 20.0 | 16480 | 1.0641 | 0.8053 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1