girijesh's picture
Add new SentenceTransformer model
e8373a3 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
  - source_sentence: >-
      The net cash provided by operating activities during fiscal 2023 was
      related to net income of $208 million, adjusted for non-cash items
      including $3.8 billion of depreciation and amortization and $3.3 billion
      related to stock-based compensation expense.
    sentences:
      - >-
        What are the three key aspects encompassed in a company's internal
        control over financial reporting?
      - What was the net cash provided by operating activities for fiscal 2023?
      - What are the two operating segments of NVIDIA as mentioned in the text?
  - source_sentence: >-
      Intellectual Property  To establish and protect our proprietary rights, we
      rely on a combination of patents, trademarks, copyrights, trade secrets,
      including know-how, license agreements, confidentiality procedures,
      non-disclosure agreements with third parties, employee disclosure and
      invention assignment agreements, and other contractual rights.
    sentences:
      - >-
        What condition does Synthroid treat and what type of drug is it
        formulated as?
      - >-
        What legal tools does the company use to protect its intellectual
        property?
      - >-
        In which item and part of a financial document would you find
        information on legal proceedings?
  - source_sentence: >-
      Cost of revenues is comprised of TAC and other costs of revenues. TAC
      includes amounts paid to our distribution partners and Google Network
      partners primarily for ads displayed on their properties. Other cost of
      revenues includes compensation expense related to our data centers and
      operations, content acquisition costs, depreciation expense related to
      technical infrastructure, and inventory and other costs related to devices
      we sell.
    sentences:
      - What is included in the cost of revenues for Google?
      - What was the total net uncertain tax positions as of December 31, 2023?
      - >-
        What portion of the restructuring charges incurred in fiscal 2023 are
        expected to be settled with cash?
  - source_sentence: Comprehensive income (loss) | $ | (362) | | $ | 1,868 | $ | 4,775
    sentences:
      - What measures does the company take to ensure product quality?
      - >-
        How many pages does Item 8, which includes Financial Statements and
        Supplementary Data, span?
      - What was the total comprehensive income for Airbnb, Inc. in 2023?
  - source_sentence: >-
      We make our branded beverage products available to consumers throughout
      the world through our network of independent bottling partners,
      distributors, wholesalers and retailers as well as our consolidated
      bottling and distribution operations.
    sentences:
      - >-
        How does The Coca-Cola Company distribute its beverage products
        globally?
      - >-
        What accounting method is predominantly used to determine inventory
        costs in the Company's supermarket divisions before LIFO adjustments?
      - How are the company's inventories valued?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.7142857142857143
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8485714285714285
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8814285714285715
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9171428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7142857142857143
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28285714285714286
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17628571428571424
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09171428571428569
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7142857142857143
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8485714285714285
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8814285714285715
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9171428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8195547708074192
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7879784580498865
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.791495828863575
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7157142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8457142857142858
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8814285714285715
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.92
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7157142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2819047619047619
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17628571428571424
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09199999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7157142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8457142857142858
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8814285714285715
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.92
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8200080507124731
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7878299319727888
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7911645774121049
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6914285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8471428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.88
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.91
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6914285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28238095238095234
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.176
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09099999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6914285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8471428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.88
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.91
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8087696033003087
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7755997732426303
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7799208675704249
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6914285714285714
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.83
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.87
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9071428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6914285714285714
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.174
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0907142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6914285714285714
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.83
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.87
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9071428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8024684596621504
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7686116780045347
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7729258054107728
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6585714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8028571428571428
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8357142857142857
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8828571428571429
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6585714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2676190476190476
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1671428571428571
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08828571428571429
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6585714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8028571428571428
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8357142857142857
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8828571428571429
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7735846622621076
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.738378684807256
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7433829659777168
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("girijesh/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'We make our branded beverage products available to consumers throughout the world through our network of independent bottling partners, distributors, wholesalers and retailers as well as our consolidated bottling and distribution operations.',
    'How does The Coca-Cola Company distribute its beverage products globally?',
    "What accounting method is predominantly used to determine inventory costs in the Company's supermarket divisions before LIFO adjustments?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7143
cosine_accuracy@3 0.8486
cosine_accuracy@5 0.8814
cosine_accuracy@10 0.9171
cosine_precision@1 0.7143
cosine_precision@3 0.2829
cosine_precision@5 0.1763
cosine_precision@10 0.0917
cosine_recall@1 0.7143
cosine_recall@3 0.8486
cosine_recall@5 0.8814
cosine_recall@10 0.9171
cosine_ndcg@10 0.8196
cosine_mrr@10 0.788
cosine_map@100 0.7915

Information Retrieval

Metric Value
cosine_accuracy@1 0.7157
cosine_accuracy@3 0.8457
cosine_accuracy@5 0.8814
cosine_accuracy@10 0.92
cosine_precision@1 0.7157
cosine_precision@3 0.2819
cosine_precision@5 0.1763
cosine_precision@10 0.092
cosine_recall@1 0.7157
cosine_recall@3 0.8457
cosine_recall@5 0.8814
cosine_recall@10 0.92
cosine_ndcg@10 0.82
cosine_mrr@10 0.7878
cosine_map@100 0.7912

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.8471
cosine_accuracy@5 0.88
cosine_accuracy@10 0.91
cosine_precision@1 0.6914
cosine_precision@3 0.2824
cosine_precision@5 0.176
cosine_precision@10 0.091
cosine_recall@1 0.6914
cosine_recall@3 0.8471
cosine_recall@5 0.88
cosine_recall@10 0.91
cosine_ndcg@10 0.8088
cosine_mrr@10 0.7756
cosine_map@100 0.7799

Information Retrieval

Metric Value
cosine_accuracy@1 0.6914
cosine_accuracy@3 0.83
cosine_accuracy@5 0.87
cosine_accuracy@10 0.9071
cosine_precision@1 0.6914
cosine_precision@3 0.2767
cosine_precision@5 0.174
cosine_precision@10 0.0907
cosine_recall@1 0.6914
cosine_recall@3 0.83
cosine_recall@5 0.87
cosine_recall@10 0.9071
cosine_ndcg@10 0.8025
cosine_mrr@10 0.7686
cosine_map@100 0.7729

Information Retrieval

Metric Value
cosine_accuracy@1 0.6586
cosine_accuracy@3 0.8029
cosine_accuracy@5 0.8357
cosine_accuracy@10 0.8829
cosine_precision@1 0.6586
cosine_precision@3 0.2676
cosine_precision@5 0.1671
cosine_precision@10 0.0883
cosine_recall@1 0.6586
cosine_recall@3 0.8029
cosine_recall@5 0.8357
cosine_recall@10 0.8829
cosine_ndcg@10 0.7736
cosine_mrr@10 0.7384
cosine_map@100 0.7434

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 44.98 tokens
    • max: 439 tokens
    • min: 7 tokens
    • mean: 20.31 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Change in control events potentially triggering benefits under the CIC Plan and Mr. Begor’s agreement would occur, subject to certain exceptions, if (1) any person acquires 20% or more of our voting stock; (2) upon a merger or other business combination, our shareholders receive less than two-thirds of the common stock and combined voting power of the new company; (3) members of the current Board of Directors ceasing to constitute a majority of the Board of Directors, except for new directors that are regularly elected; (4) we sell or otherwise dispose of all or substantially all of our assets; or (5) we liquidate or dissolve. What events potentially trigger benefits under Mark W. Begor's change in control agreement and the CIC Plan?
    The growth in marketplace revenue was primarily due to the impact of the pricing update to increase our seller transaction fee for the Etsy marketplace from 5% to 6.5% beginning on April 11, 2022, and an increase in foreign currency payments, which we earn an additional transaction fee on, in the year ended December 31, 2023. What drove the growth in marketplace revenue for the year ended December 31, 2023?
    We are focused on ensuring that we efficiently allocate our resources to the areas with the highest potential for profitable growth. ... The uncertain macroeconomic environment in many of these markets is expected to continue and we aim to ensure our investments in these international markets are appropriate relative to the size of the opportunity. What are Hershey's goals for international expansion and how are they being approached?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_map@100 dim_512_cosine_map@100 dim_256_cosine_map@100 dim_128_cosine_map@100 dim_64_cosine_map@100
0.9697 6 - 0.7527 0.7516 0.7454 0.7253 0.6808
1.6162 10 2.3351 - - - - -
1.9394 12 - 0.7740 0.7699 0.7707 0.7474 0.7188
2.9091 18 - 0.7784 0.7790 0.7735 0.7575 0.7275
3.2323 20 1.0519 - - - - -
3.8788 24 - 0.7818 0.7784 0.7763 0.7581 0.7293
0.9697 6 - 0.7836 0.7826 0.7817 0.7664 0.7353
1.6162 10 0.8132 - - - - -
1.9394 12 - 0.7887 0.7887 0.7837 0.7714 0.7409
2.9091 18 - 0.7897 0.7902 0.7798 0.7721 0.7410
3.2323 20 0.6098 - - - - -
3.8788 24 - 0.7915 0.7912 0.7799 0.7729 0.7434
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 1.0.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}