BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("girijesh/bge-base-financial-matryoshka")
# Run inference
sentences = [
'We make our branded beverage products available to consumers throughout the world through our network of independent bottling partners, distributors, wholesalers and retailers as well as our consolidated bottling and distribution operations.',
'How does The Coca-Cola Company distribute its beverage products globally?',
"What accounting method is predominantly used to determine inventory costs in the Company's supermarket divisions before LIFO adjustments?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7143 |
cosine_accuracy@3 | 0.8486 |
cosine_accuracy@5 | 0.8814 |
cosine_accuracy@10 | 0.9171 |
cosine_precision@1 | 0.7143 |
cosine_precision@3 | 0.2829 |
cosine_precision@5 | 0.1763 |
cosine_precision@10 | 0.0917 |
cosine_recall@1 | 0.7143 |
cosine_recall@3 | 0.8486 |
cosine_recall@5 | 0.8814 |
cosine_recall@10 | 0.9171 |
cosine_ndcg@10 | 0.8196 |
cosine_mrr@10 | 0.788 |
cosine_map@100 | 0.7915 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7157 |
cosine_accuracy@3 | 0.8457 |
cosine_accuracy@5 | 0.8814 |
cosine_accuracy@10 | 0.92 |
cosine_precision@1 | 0.7157 |
cosine_precision@3 | 0.2819 |
cosine_precision@5 | 0.1763 |
cosine_precision@10 | 0.092 |
cosine_recall@1 | 0.7157 |
cosine_recall@3 | 0.8457 |
cosine_recall@5 | 0.8814 |
cosine_recall@10 | 0.92 |
cosine_ndcg@10 | 0.82 |
cosine_mrr@10 | 0.7878 |
cosine_map@100 | 0.7912 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6914 |
cosine_accuracy@3 | 0.8471 |
cosine_accuracy@5 | 0.88 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.6914 |
cosine_precision@3 | 0.2824 |
cosine_precision@5 | 0.176 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.6914 |
cosine_recall@3 | 0.8471 |
cosine_recall@5 | 0.88 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.8088 |
cosine_mrr@10 | 0.7756 |
cosine_map@100 | 0.7799 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6914 |
cosine_accuracy@3 | 0.83 |
cosine_accuracy@5 | 0.87 |
cosine_accuracy@10 | 0.9071 |
cosine_precision@1 | 0.6914 |
cosine_precision@3 | 0.2767 |
cosine_precision@5 | 0.174 |
cosine_precision@10 | 0.0907 |
cosine_recall@1 | 0.6914 |
cosine_recall@3 | 0.83 |
cosine_recall@5 | 0.87 |
cosine_recall@10 | 0.9071 |
cosine_ndcg@10 | 0.8025 |
cosine_mrr@10 | 0.7686 |
cosine_map@100 | 0.7729 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6586 |
cosine_accuracy@3 | 0.8029 |
cosine_accuracy@5 | 0.8357 |
cosine_accuracy@10 | 0.8829 |
cosine_precision@1 | 0.6586 |
cosine_precision@3 | 0.2676 |
cosine_precision@5 | 0.1671 |
cosine_precision@10 | 0.0883 |
cosine_recall@1 | 0.6586 |
cosine_recall@3 | 0.8029 |
cosine_recall@5 | 0.8357 |
cosine_recall@10 | 0.8829 |
cosine_ndcg@10 | 0.7736 |
cosine_mrr@10 | 0.7384 |
cosine_map@100 | 0.7434 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 44.98 tokens
- max: 439 tokens
- min: 7 tokens
- mean: 20.31 tokens
- max: 45 tokens
- Samples:
positive anchor Change in control events potentially triggering benefits under the CIC Plan and Mr. Begor’s agreement would occur, subject to certain exceptions, if (1) any person acquires 20% or more of our voting stock; (2) upon a merger or other business combination, our shareholders receive less than two-thirds of the common stock and combined voting power of the new company; (3) members of the current Board of Directors ceasing to constitute a majority of the Board of Directors, except for new directors that are regularly elected; (4) we sell or otherwise dispose of all or substantially all of our assets; or (5) we liquidate or dissolve.
What events potentially trigger benefits under Mark W. Begor's change in control agreement and the CIC Plan?
The growth in marketplace revenue was primarily due to the impact of the pricing update to increase our seller transaction fee for the Etsy marketplace from 5% to 6.5% beginning on April 11, 2022, and an increase in foreign currency payments, which we earn an additional transaction fee on, in the year ended December 31, 2023.
What drove the growth in marketplace revenue for the year ended December 31, 2023?
We are focused on ensuring that we efficiently allocate our resources to the areas with the highest potential for profitable growth. ... The uncertain macroeconomic environment in many of these markets is expected to continue and we aim to ensure our investments in these international markets are appropriate relative to the size of the opportunity.
What are Hershey's goals for international expansion and how are they being approached?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.9697 | 6 | - | 0.7527 | 0.7516 | 0.7454 | 0.7253 | 0.6808 |
1.6162 | 10 | 2.3351 | - | - | - | - | - |
1.9394 | 12 | - | 0.7740 | 0.7699 | 0.7707 | 0.7474 | 0.7188 |
2.9091 | 18 | - | 0.7784 | 0.7790 | 0.7735 | 0.7575 | 0.7275 |
3.2323 | 20 | 1.0519 | - | - | - | - | - |
3.8788 | 24 | - | 0.7818 | 0.7784 | 0.7763 | 0.7581 | 0.7293 |
0.9697 | 6 | - | 0.7836 | 0.7826 | 0.7817 | 0.7664 | 0.7353 |
1.6162 | 10 | 0.8132 | - | - | - | - | - |
1.9394 | 12 | - | 0.7887 | 0.7887 | 0.7837 | 0.7714 | 0.7409 |
2.9091 | 18 | - | 0.7897 | 0.7902 | 0.7798 | 0.7721 | 0.7410 |
3.2323 | 20 | 0.6098 | - | - | - | - | - |
3.8788 | 24 | - | 0.7915 | 0.7912 | 0.7799 | 0.7729 | 0.7434 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for girijesh/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.714
- Cosine Accuracy@3 on dim 768self-reported0.849
- Cosine Accuracy@5 on dim 768self-reported0.881
- Cosine Accuracy@10 on dim 768self-reported0.917
- Cosine Precision@1 on dim 768self-reported0.714
- Cosine Precision@3 on dim 768self-reported0.283
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.714
- Cosine Recall@3 on dim 768self-reported0.849