|
--- |
|
license: llama3.1 |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
base_model: |
|
- meta-llama/Meta-Llama-3.1-70B-Instruct |
|
- turboderp/Cat-Llama-3-70B-instruct |
|
- Nexusflow/Athene-70B |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/KxaiZ7rDKkYlix99O9j5H.png) |
|
|
|
**Cathallama** |
|
===================================== |
|
|
|
Awesome model, my new daily driver. |
|
|
|
Edit: I am seeing a lot of token generations pointing to unknown unicode addresses that didn't show up during testing for this model, so I have stopped using it and I am working on a new version. |
|
|
|
**Notable Performance** |
|
|
|
* 9% overall success rate increase on MMLU-PRO over LLaMA 3.1 70b at Q4_0 |
|
* Strong performance in MMLU-PRO categories overall |
|
* Great performance during manual testing |
|
|
|
**Creation workflow** |
|
===================== |
|
**Models merged** |
|
* meta-llama/Meta-Llama-3.1-70B-Instruct |
|
* turboderp/Cat-Llama-3-70B-instruct |
|
* Nexusflow/Athene-70B |
|
|
|
``` |
|
flowchart TD |
|
A[Nexusflow_Athene] -->|Merge with| B[Meta-Llama-3.1] |
|
C[turboderp_Cat] -->|Merge with| D[Meta-Llama-3.1] |
|
B -->| | E[Merge] |
|
D -->| | E[Merge] |
|
E[Merge] -->|Result| F[Cathallama] |
|
``` |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/bBcB194tAtsZjPUnI1pDQ.png) |
|
|
|
**Testing** |
|
===================== |
|
|
|
**Hyperparameters** |
|
--------------- |
|
|
|
* **Temperature**: 0.0 for automated, 0.9 for manual |
|
* **Penalize repeat sequence**: 1.05 |
|
* **Consider N tokens for penalize**: 256 |
|
* **Penalize repetition of newlines** |
|
* **Top-K sampling**: 40 |
|
* **Top-P sampling**: 0.95 |
|
* **Min-P sampling**: 0.05 |
|
|
|
**LLaMAcpp Version** |
|
------------------ |
|
|
|
* b3527-2-g2d5dd7bb |
|
* -fa -ngl -1 -ctk f16 --no-mmap |
|
|
|
**Tested Files** |
|
------------------ |
|
|
|
* Cathallama-70B.Q4_0.gguf |
|
* Nexusflow_Athene-70B.Q4_0.gguf |
|
* turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf |
|
* Meta-Llama-3.1-70B-Instruct.Q4_0.gguf |
|
|
|
**Tests** |
|
-------------- |
|
|
|
|
|
**Manual testing** |
|
|
|
| Category | Test Case | Cathallama-70B.Q4_0.gguf | Nexusflow_Athene-70B.Q4_0.gguf | turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | |
|
| --- | --- | --- | --- | --- | --- | |
|
| **Common Sense** | Ball on cup | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | OK | |
|
| | Big duck small horse | <span style="color: red;">KO</span> | OK | <span style="color: red;">KO</span> | OK | |
|
| | Killers | OK | OK | <span style="color: red;">KO</span> | OK | |
|
| | Strawberry r's | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | |
|
| | 9.11 or 9.9 bigger | <span style="color: red;">KO</span> | OK | OK | <span style="color: red;">KO</span> | |
|
| | Dragon or lens | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | |
|
| | Shirts | OK | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | |
|
| | Sisters | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | |
|
| | Jane faster | OK | OK | OK | OK | |
|
| **Programming** | JSON | OK | OK | OK | OK | |
|
| | Python snake game | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | |
|
| **Math** | Door window combination | OK | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | |
|
| **Smoke** | Poem | OK | OK | OK | OK | |
|
| | Story | OK | OK | KO | OK | |
|
|
|
*Note: See [sample_generations.txt](https://huggingface.co./gbueno86/Cathallama-70B/blob/main/sample_generations.txt) on the main folder of the repo for the raw generations.* |
|
|
|
**MMLU-PRO** |
|
|
|
| Model | Success % | |
|
| --- | --- | |
|
| Cathallama-70B.Q4_0.gguf | **51.0%** | |
|
| turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | 37.0% | |
|
| Nexusflow_Athene-70B.Q4_0.gguf | 41.0% | |
|
| Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 42.0% | |
|
|
|
| MMLU-PRO category| Cathallama-70B.Q4_0.gguf | Nexusflow_Athene-70B.Q4_0.gguf | turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | |
|
| --- | --- | --- | --- | --- | |
|
| Business | **50.0%** | 45.0% | 20.0% | 40.0% | |
|
| Law | **40.0%** | 30.0% | 30.0% | 35.0% | |
|
| Psychology | **85.0%** | 80.0% | 70.0% | 75.0% | |
|
| Biology | 80.0% | 70.0% | **85.0%** | 80.0% | |
|
| Chemistry | **55.0%** | 40.0% | 35.0% | 35.0% | |
|
| History | **65.0%** | 60.0% | 55.0% | **65.0%** | |
|
| Other | **55.0%** | 50.0% | 45.0% | 50.0% | |
|
| Health | **75.0%** | 40.0% | 60.0% | 65.0% | |
|
| Economics | **80.0%** | 75.0% | 65.0% | 70.0% | |
|
| Math | **45.0%** | 35.0% | 15.0% | 40.0% | |
|
| Physics | **50.0%** | 45.0% | 45.0% | 45.0% | |
|
| Computer Science | **60.0%** | 55.0% | 55.0% | **60.0%** | |
|
| Philosophy | 55.0% | **60.0%** | 45.0% | 50.0% | |
|
| Engineering | 35.0% | **40.0%** | 25.0% | 35.0% | |
|
|
|
*Note: MMLU-PRO Overall tested with 100 questions. Categories testes with 20 questions from each category.* |
|
|
|
**PubmedQA** |
|
|
|
Model Name | Success% | |
|
| --- | --- | |
|
| Cathallama-70B.Q4_0.gguf| 73.00% | |
|
| turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | **76.00%** | |
|
| Nexusflow_Athene-70B.Q4_0.gguf | 67.00% | |
|
| Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 72.00% | |
|
|
|
|
|
**Request** |
|
-------------- |
|
If you are hiring in the EU or can sponsor a visa, PM me :D |
|
|
|
|
|
PS. Thank you mradermacher for the GGUFs! |