File size: 5,365 Bytes
3c77eb1
 
 
 
b3f024c
 
 
 
 
 
 
 
3c77eb1
 
 
 
 
 
 
 
262c672
4290ba9
3c77eb1
 
 
b9fe0e0
3c77eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61dde2
 
 
 
 
 
3c77eb1
b61dde2
 
 
 
 
 
 
 
 
 
 
3c77eb1
b61dde2
3c77eb1
b61dde2
 
 
3c77eb1
 
 
b61dde2
3c77eb1
b61dde2
 
3c77eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f18b96
3c77eb1
 
 
 
 
6b5ce98
 
 
 
3c77eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61dde2
3c77eb1
 
 
 
 
391c639
3c77eb1
 
391c639
 
3c77eb1
391c639
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: llama3.1
language:
- en
library_name: transformers
tags:
- mergekit
- merge
base_model:
- meta-llama/Meta-Llama-3.1-70B-Instruct
- turboderp/Cat-Llama-3-70B-instruct
- Nexusflow/Athene-70B
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/KxaiZ7rDKkYlix99O9j5H.png)

**Cathallama**
=====================================

Awesome model, my new daily driver.

Edit: I am seeing a lot of token generations pointing to unknown unicode addresses that didn't show up during testing for this model, so I have stopped using it and I am working on a new version.

**Notable Performance**

* 9% overall success rate increase on MMLU-PRO over LLaMA 3.1 70b at Q4_0
* Strong performance in MMLU-PRO categories overall
* Great performance during manual testing

**Creation workflow**
=====================
**Models merged**
* meta-llama/Meta-Llama-3.1-70B-Instruct
* turboderp/Cat-Llama-3-70B-instruct
* Nexusflow/Athene-70B

```
flowchart TD
    A[Nexusflow_Athene] -->|Merge with| B[Meta-Llama-3.1]
    C[turboderp_Cat] -->|Merge with| D[Meta-Llama-3.1]
    B -->| | E[Merge]
    D -->| | E[Merge]
    E[Merge] -->|Result| F[Cathallama]
```


![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/bBcB194tAtsZjPUnI1pDQ.png)

**Testing**
=====================

**Hyperparameters**
---------------

* **Temperature**: 0.0 for automated, 0.9 for manual
* **Penalize repeat sequence**: 1.05
* **Consider N tokens for penalize**: 256
* **Penalize repetition of newlines**
* **Top-K sampling**: 40
* **Top-P sampling**: 0.95
* **Min-P sampling**: 0.05

**LLaMAcpp Version**
------------------

* b3527-2-g2d5dd7bb
* -fa -ngl -1 -ctk f16 --no-mmap

**Tested Files**
------------------

* Cathallama-70B.Q4_0.gguf
* Nexusflow_Athene-70B.Q4_0.gguf
* turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf
* Meta-Llama-3.1-70B-Instruct.Q4_0.gguf

**Tests**
--------------


**Manual testing**

| Category | Test Case | Cathallama-70B.Q4_0.gguf | Nexusflow_Athene-70B.Q4_0.gguf | turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf |
| --- | --- | --- | --- | --- | --- |
| **Common Sense** | Ball on cup | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | OK |
|  | Big duck small horse | <span style="color: red;">KO</span> | OK | <span style="color: red;">KO</span> | OK |
|  | Killers | OK | OK | <span style="color: red;">KO</span> | OK |
|  | Strawberry r's | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | 9.11 or 9.9 bigger | <span style="color: red;">KO</span> | OK | OK | <span style="color: red;">KO</span> |
|  | Dragon or lens | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | Shirts | OK | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | Sisters | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | Jane faster | OK | OK | OK | OK |
| **Programming** | JSON | OK | OK | OK | OK |
|  | Python snake game | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
| **Math** | Door window combination | OK | OK | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
| **Smoke** | Poem | OK | OK | OK | OK |
|  | Story | OK | OK | KO | OK |

*Note: See [sample_generations.txt](https://huggingface.co./gbueno86/Cathallama-70B/blob/main/sample_generations.txt) on the main folder of the repo for the raw generations.*

**MMLU-PRO**

| Model | Success % |
| --- | --- |
| Cathallama-70B.Q4_0.gguf | **51.0%** |
| turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | 37.0% |
| Nexusflow_Athene-70B.Q4_0.gguf | 41.0% |
| Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 42.0% |

| MMLU-PRO category| Cathallama-70B.Q4_0.gguf | Nexusflow_Athene-70B.Q4_0.gguf | turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf |
| --- | --- | --- | --- | --- |
| Business | **50.0%** | 45.0% | 20.0% | 40.0% |
| Law | **40.0%** | 30.0% | 30.0% | 35.0% |
| Psychology | **85.0%** | 80.0% | 70.0% | 75.0% |
| Biology | 80.0% | 70.0% | **85.0%** | 80.0% |
| Chemistry | **55.0%** | 40.0% | 35.0% | 35.0% |
| History | **65.0%** | 60.0% | 55.0% | **65.0%** |
| Other | **55.0%** | 50.0% | 45.0% | 50.0% |
| Health | **75.0%** | 40.0% | 60.0% | 65.0% |
| Economics | **80.0%** | 75.0% | 65.0% | 70.0% |
| Math | **45.0%** | 35.0% | 15.0% | 40.0% |
| Physics | **50.0%** | 45.0% | 45.0% | 45.0% |
| Computer Science | **60.0%** | 55.0% | 55.0% | **60.0%** |
| Philosophy | 55.0% | **60.0%** | 45.0% | 50.0% |
| Engineering | 35.0% | **40.0%** | 25.0% | 35.0% |

*Note: MMLU-PRO Overall tested with 100 questions. Categories testes with 20 questions from each category.*

**PubmedQA**

 Model Name | Success% |
| --- | --- |
| Cathallama-70B.Q4_0.gguf| 73.00% |
| turboderp_Cat-Llama-3-70B-instruct.Q4_0.gguf | **76.00%** |
| Nexusflow_Athene-70B.Q4_0.gguf | 67.00% |
| Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 72.00% |


**Request**
--------------
If you are hiring in the EU or can sponsor a visa, PM me :D


PS. Thank you mradermacher for the GGUFs!