metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
ITEM 7. MANAGEMENT’S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND
RESULTS OF OPERATIONS The following discussion and analysis should be read
in conjunction with the consolidated financial statements and the related
notes included elsewhere in this Annual Report on Form 10-K. For further
discussion of our products and services, technology and competitive
strengths, refer to Item 1- Business.
sentences:
- >-
What was the total net automotive cash provided by investing activities
in 2023?
- >-
What is the purpose of the Management's Discussion and Analysis of
Financial Condition and Results of Operations section in the Annual
Report on Form 10-K?
- >-
What are the components included in the management discussion and
analysis of financial condition and results of operations?
- source_sentence: >-
Kroger is committed to maintaining a net total debt to adjusted EBITDA
ratio target range of 2.30 to 2.50.
sentences:
- >-
What was the remaining available amount of the share repurchase
authorization as of January 29, 2023?
- >-
What range does Kroger aim for its net total debt to adjusted EBITDA
ratio?
- >-
What was the starting wage for all entry-level positions in the U.S. as
of September 2023?
- source_sentence: Google Cloud operating income of $1.7 billion for 2023.
sentences:
- What was the operating income for Google Cloud in 2023?
- What types of products are offered in Garmin's Fitness segment?
- What was the net sales of the company in fiscal 2022?
- source_sentence: >-
The effective income tax rate for Alphabet Inc. at the end of the year
2023 was 13.9%.
sentences:
- >-
What was the percentage change in Compute & Networking revenue from
fiscal year 2022 to 2023?
- >-
What factors primarily contributed to the increase in non-interest
revenues across all revenue categories?
- >-
What was the effective income tax rate for Alphabet Inc. at the end of
the year 2023?
- source_sentence: >-
State legislation increasingly requires PBMs to conduct audits of network
pharmacies regarding claims submitted for payment. Non-compliance could
prevent the recoupment of overpaid amounts, potentially causing financial
and legal repercussions.
sentences:
- >-
What are the potential consequences for a company if its PBMs fail to
comply with pharmacy audit regulations?
- >-
What pages do the Consolidated Financial Statements and their
accompanying Notes and reports appear on in the document?
- >-
What are the primary services provided by the company under the Xfinity,
Comcast Business, and Sky brands?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6785714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6785714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2780952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6785714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7995179593313807
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7638202947845802
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7674168947978975
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6685714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8271428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8685714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9128571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6685714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2757142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1737142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09128571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6685714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8271428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8685714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9128571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7954721927324272
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7574353741496596
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7606771546726785
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6728571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6728571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6728571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8142857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7916203877025221
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7552613378684805
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7590698804335085
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6528571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8114285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8885714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6528571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2704761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08885714285714286
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6528571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8114285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8885714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7754227314755763
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.738630385487528
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7431237490151862
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6157142857142858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7614285714285715
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.81
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8642857142857143
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6157142857142858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2538095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16199999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08642857142857142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6157142857142858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7614285714285715
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.81
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8642857142857143
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7413954849024657
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.701954648526077
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.707051130510896
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("gauravsirola/bge-base-financial-matryoshka-v1")
sentences = [
'State legislation increasingly requires PBMs to conduct audits of network pharmacies regarding claims submitted for payment. Non-compliance could prevent the recoupment of overpaid amounts, potentially causing financial and legal repercussions.',
'What are the potential consequences for a company if its PBMs fail to comply with pharmacy audit regulations?',
'What pages do the Consolidated Financial Statements and their accompanying Notes and reports appear on in the document?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6786 |
cosine_accuracy@3 |
0.8343 |
cosine_accuracy@5 |
0.88 |
cosine_accuracy@10 |
0.9086 |
cosine_precision@1 |
0.6786 |
cosine_precision@3 |
0.2781 |
cosine_precision@5 |
0.176 |
cosine_precision@10 |
0.0909 |
cosine_recall@1 |
0.6786 |
cosine_recall@3 |
0.8343 |
cosine_recall@5 |
0.88 |
cosine_recall@10 |
0.9086 |
cosine_ndcg@10 |
0.7995 |
cosine_mrr@10 |
0.7638 |
cosine_map@100 |
0.7674 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6686 |
cosine_accuracy@3 |
0.8271 |
cosine_accuracy@5 |
0.8686 |
cosine_accuracy@10 |
0.9129 |
cosine_precision@1 |
0.6686 |
cosine_precision@3 |
0.2757 |
cosine_precision@5 |
0.1737 |
cosine_precision@10 |
0.0913 |
cosine_recall@1 |
0.6686 |
cosine_recall@3 |
0.8271 |
cosine_recall@5 |
0.8686 |
cosine_recall@10 |
0.9129 |
cosine_ndcg@10 |
0.7955 |
cosine_mrr@10 |
0.7574 |
cosine_map@100 |
0.7607 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6729 |
cosine_accuracy@3 |
0.8143 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.6729 |
cosine_precision@3 |
0.2714 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.6729 |
cosine_recall@3 |
0.8143 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.7916 |
cosine_mrr@10 |
0.7553 |
cosine_map@100 |
0.7591 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6529 |
cosine_accuracy@3 |
0.8114 |
cosine_accuracy@5 |
0.85 |
cosine_accuracy@10 |
0.8886 |
cosine_precision@1 |
0.6529 |
cosine_precision@3 |
0.2705 |
cosine_precision@5 |
0.17 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.6529 |
cosine_recall@3 |
0.8114 |
cosine_recall@5 |
0.85 |
cosine_recall@10 |
0.8886 |
cosine_ndcg@10 |
0.7754 |
cosine_mrr@10 |
0.7386 |
cosine_map@100 |
0.7431 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6157 |
cosine_accuracy@3 |
0.7614 |
cosine_accuracy@5 |
0.81 |
cosine_accuracy@10 |
0.8643 |
cosine_precision@1 |
0.6157 |
cosine_precision@3 |
0.2538 |
cosine_precision@5 |
0.162 |
cosine_precision@10 |
0.0864 |
cosine_recall@1 |
0.6157 |
cosine_recall@3 |
0.7614 |
cosine_recall@5 |
0.81 |
cosine_recall@10 |
0.8643 |
cosine_ndcg@10 |
0.7414 |
cosine_mrr@10 |
0.702 |
cosine_map@100 |
0.7071 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 44.73 tokens
- max: 301 tokens
|
- min: 8 tokens
- mean: 20.57 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
Net loss was $396.6 million and $973.6 million during the years ended December 31, 2023, and December 31, 2022, respectively. |
What was the net loss for the year ended December 31, 2022? |
Under the 2023 IDA agreement, the service fee on client cash deposits held at the TD Depository Institutions remains at 15 basis points, as it was in the 2019 IDA agreement. |
How much is the service fee on client cash deposits held at the TD Depository Institutions under the 2023 IDA agreement? |
The total shareholders’ deficit is listed as $7,994.8 million in the latest financial statement. |
What is the total shareholder's deficit according to the latest financial statement? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5585 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7207 |
0.7441 |
0.7510 |
0.6857 |
0.7493 |
1.6244 |
20 |
0.6691 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7392 |
0.7564 |
0.7601 |
0.7006 |
0.7661 |
2.4365 |
30 |
0.4702 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7430 |
0.7600 |
0.7619 |
0.7065 |
0.7685 |
3.2487 |
40 |
0.407 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7431 |
0.7591 |
0.7607 |
0.7071 |
0.7674 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}