gauravsirola commited on
Commit
076913b
1 Parent(s): 0e91514

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,811 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: ITEM 7. MANAGEMENT’S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION
35
+ AND RESULTS OF OPERATIONS The following discussion and analysis should be read
36
+ in conjunction with the consolidated financial statements and the related notes
37
+ included elsewhere in this Annual Report on Form 10-K. For further discussion
38
+ of our products and services, technology and competitive strengths, refer to Item
39
+ 1- Business.
40
+ sentences:
41
+ - What was the total net automotive cash provided by investing activities in 2023?
42
+ - What is the purpose of the Management's Discussion and Analysis of Financial Condition
43
+ and Results of Operations section in the Annual Report on Form 10-K?
44
+ - What are the components included in the management discussion and analysis of
45
+ financial condition and results of operations?
46
+ - source_sentence: Kroger is committed to maintaining a net total debt to adjusted
47
+ EBITDA ratio target range of 2.30 to 2.50.
48
+ sentences:
49
+ - What was the remaining available amount of the share repurchase authorization
50
+ as of January 29, 2023?
51
+ - What range does Kroger aim for its net total debt to adjusted EBITDA ratio?
52
+ - What was the starting wage for all entry-level positions in the U.S. as of September
53
+ 2023?
54
+ - source_sentence: Google Cloud operating income of $1.7 billion for 2023.
55
+ sentences:
56
+ - What was the operating income for Google Cloud in 2023?
57
+ - What types of products are offered in Garmin's Fitness segment?
58
+ - What was the net sales of the company in fiscal 2022?
59
+ - source_sentence: The effective income tax rate for Alphabet Inc. at the end of the
60
+ year 2023 was 13.9%.
61
+ sentences:
62
+ - What was the percentage change in Compute & Networking revenue from fiscal year
63
+ 2022 to 2023?
64
+ - What factors primarily contributed to the increase in non-interest revenues across
65
+ all revenue categories?
66
+ - What was the effective income tax rate for Alphabet Inc. at the end of the year
67
+ 2023?
68
+ - source_sentence: State legislation increasingly requires PBMs to conduct audits
69
+ of network pharmacies regarding claims submitted for payment. Non-compliance could
70
+ prevent the recoupment of overpaid amounts, potentially causing financial and
71
+ legal repercussions.
72
+ sentences:
73
+ - What are the potential consequences for a company if its PBMs fail to comply with
74
+ pharmacy audit regulations?
75
+ - What pages do the Consolidated Financial Statements and their accompanying Notes
76
+ and reports appear on in the document?
77
+ - What are the primary services provided by the company under the Xfinity, Comcast
78
+ Business, and Sky brands?
79
+ model-index:
80
+ - name: BGE base Financial Matryoshka
81
+ results:
82
+ - task:
83
+ type: information-retrieval
84
+ name: Information Retrieval
85
+ dataset:
86
+ name: dim 768
87
+ type: dim_768
88
+ metrics:
89
+ - type: cosine_accuracy@1
90
+ value: 0.6785714285714286
91
+ name: Cosine Accuracy@1
92
+ - type: cosine_accuracy@3
93
+ value: 0.8342857142857143
94
+ name: Cosine Accuracy@3
95
+ - type: cosine_accuracy@5
96
+ value: 0.88
97
+ name: Cosine Accuracy@5
98
+ - type: cosine_accuracy@10
99
+ value: 0.9085714285714286
100
+ name: Cosine Accuracy@10
101
+ - type: cosine_precision@1
102
+ value: 0.6785714285714286
103
+ name: Cosine Precision@1
104
+ - type: cosine_precision@3
105
+ value: 0.2780952380952381
106
+ name: Cosine Precision@3
107
+ - type: cosine_precision@5
108
+ value: 0.176
109
+ name: Cosine Precision@5
110
+ - type: cosine_precision@10
111
+ value: 0.09085714285714284
112
+ name: Cosine Precision@10
113
+ - type: cosine_recall@1
114
+ value: 0.6785714285714286
115
+ name: Cosine Recall@1
116
+ - type: cosine_recall@3
117
+ value: 0.8342857142857143
118
+ name: Cosine Recall@3
119
+ - type: cosine_recall@5
120
+ value: 0.88
121
+ name: Cosine Recall@5
122
+ - type: cosine_recall@10
123
+ value: 0.9085714285714286
124
+ name: Cosine Recall@10
125
+ - type: cosine_ndcg@10
126
+ value: 0.7995179593313807
127
+ name: Cosine Ndcg@10
128
+ - type: cosine_mrr@10
129
+ value: 0.7638202947845802
130
+ name: Cosine Mrr@10
131
+ - type: cosine_map@100
132
+ value: 0.7674168947978975
133
+ name: Cosine Map@100
134
+ - task:
135
+ type: information-retrieval
136
+ name: Information Retrieval
137
+ dataset:
138
+ name: dim 512
139
+ type: dim_512
140
+ metrics:
141
+ - type: cosine_accuracy@1
142
+ value: 0.6685714285714286
143
+ name: Cosine Accuracy@1
144
+ - type: cosine_accuracy@3
145
+ value: 0.8271428571428572
146
+ name: Cosine Accuracy@3
147
+ - type: cosine_accuracy@5
148
+ value: 0.8685714285714285
149
+ name: Cosine Accuracy@5
150
+ - type: cosine_accuracy@10
151
+ value: 0.9128571428571428
152
+ name: Cosine Accuracy@10
153
+ - type: cosine_precision@1
154
+ value: 0.6685714285714286
155
+ name: Cosine Precision@1
156
+ - type: cosine_precision@3
157
+ value: 0.2757142857142857
158
+ name: Cosine Precision@3
159
+ - type: cosine_precision@5
160
+ value: 0.1737142857142857
161
+ name: Cosine Precision@5
162
+ - type: cosine_precision@10
163
+ value: 0.09128571428571428
164
+ name: Cosine Precision@10
165
+ - type: cosine_recall@1
166
+ value: 0.6685714285714286
167
+ name: Cosine Recall@1
168
+ - type: cosine_recall@3
169
+ value: 0.8271428571428572
170
+ name: Cosine Recall@3
171
+ - type: cosine_recall@5
172
+ value: 0.8685714285714285
173
+ name: Cosine Recall@5
174
+ - type: cosine_recall@10
175
+ value: 0.9128571428571428
176
+ name: Cosine Recall@10
177
+ - type: cosine_ndcg@10
178
+ value: 0.7954721927324272
179
+ name: Cosine Ndcg@10
180
+ - type: cosine_mrr@10
181
+ value: 0.7574353741496596
182
+ name: Cosine Mrr@10
183
+ - type: cosine_map@100
184
+ value: 0.7606771546726785
185
+ name: Cosine Map@100
186
+ - task:
187
+ type: information-retrieval
188
+ name: Information Retrieval
189
+ dataset:
190
+ name: dim 256
191
+ type: dim_256
192
+ metrics:
193
+ - type: cosine_accuracy@1
194
+ value: 0.6728571428571428
195
+ name: Cosine Accuracy@1
196
+ - type: cosine_accuracy@3
197
+ value: 0.8142857142857143
198
+ name: Cosine Accuracy@3
199
+ - type: cosine_accuracy@5
200
+ value: 0.8642857142857143
201
+ name: Cosine Accuracy@5
202
+ - type: cosine_accuracy@10
203
+ value: 0.9042857142857142
204
+ name: Cosine Accuracy@10
205
+ - type: cosine_precision@1
206
+ value: 0.6728571428571428
207
+ name: Cosine Precision@1
208
+ - type: cosine_precision@3
209
+ value: 0.2714285714285714
210
+ name: Cosine Precision@3
211
+ - type: cosine_precision@5
212
+ value: 0.17285714285714285
213
+ name: Cosine Precision@5
214
+ - type: cosine_precision@10
215
+ value: 0.09042857142857141
216
+ name: Cosine Precision@10
217
+ - type: cosine_recall@1
218
+ value: 0.6728571428571428
219
+ name: Cosine Recall@1
220
+ - type: cosine_recall@3
221
+ value: 0.8142857142857143
222
+ name: Cosine Recall@3
223
+ - type: cosine_recall@5
224
+ value: 0.8642857142857143
225
+ name: Cosine Recall@5
226
+ - type: cosine_recall@10
227
+ value: 0.9042857142857142
228
+ name: Cosine Recall@10
229
+ - type: cosine_ndcg@10
230
+ value: 0.7916203877025221
231
+ name: Cosine Ndcg@10
232
+ - type: cosine_mrr@10
233
+ value: 0.7552613378684805
234
+ name: Cosine Mrr@10
235
+ - type: cosine_map@100
236
+ value: 0.7590698804335085
237
+ name: Cosine Map@100
238
+ - task:
239
+ type: information-retrieval
240
+ name: Information Retrieval
241
+ dataset:
242
+ name: dim 128
243
+ type: dim_128
244
+ metrics:
245
+ - type: cosine_accuracy@1
246
+ value: 0.6528571428571428
247
+ name: Cosine Accuracy@1
248
+ - type: cosine_accuracy@3
249
+ value: 0.8114285714285714
250
+ name: Cosine Accuracy@3
251
+ - type: cosine_accuracy@5
252
+ value: 0.85
253
+ name: Cosine Accuracy@5
254
+ - type: cosine_accuracy@10
255
+ value: 0.8885714285714286
256
+ name: Cosine Accuracy@10
257
+ - type: cosine_precision@1
258
+ value: 0.6528571428571428
259
+ name: Cosine Precision@1
260
+ - type: cosine_precision@3
261
+ value: 0.2704761904761904
262
+ name: Cosine Precision@3
263
+ - type: cosine_precision@5
264
+ value: 0.16999999999999998
265
+ name: Cosine Precision@5
266
+ - type: cosine_precision@10
267
+ value: 0.08885714285714286
268
+ name: Cosine Precision@10
269
+ - type: cosine_recall@1
270
+ value: 0.6528571428571428
271
+ name: Cosine Recall@1
272
+ - type: cosine_recall@3
273
+ value: 0.8114285714285714
274
+ name: Cosine Recall@3
275
+ - type: cosine_recall@5
276
+ value: 0.85
277
+ name: Cosine Recall@5
278
+ - type: cosine_recall@10
279
+ value: 0.8885714285714286
280
+ name: Cosine Recall@10
281
+ - type: cosine_ndcg@10
282
+ value: 0.7754227314755763
283
+ name: Cosine Ndcg@10
284
+ - type: cosine_mrr@10
285
+ value: 0.738630385487528
286
+ name: Cosine Mrr@10
287
+ - type: cosine_map@100
288
+ value: 0.7431237490151862
289
+ name: Cosine Map@100
290
+ - task:
291
+ type: information-retrieval
292
+ name: Information Retrieval
293
+ dataset:
294
+ name: dim 64
295
+ type: dim_64
296
+ metrics:
297
+ - type: cosine_accuracy@1
298
+ value: 0.6157142857142858
299
+ name: Cosine Accuracy@1
300
+ - type: cosine_accuracy@3
301
+ value: 0.7614285714285715
302
+ name: Cosine Accuracy@3
303
+ - type: cosine_accuracy@5
304
+ value: 0.81
305
+ name: Cosine Accuracy@5
306
+ - type: cosine_accuracy@10
307
+ value: 0.8642857142857143
308
+ name: Cosine Accuracy@10
309
+ - type: cosine_precision@1
310
+ value: 0.6157142857142858
311
+ name: Cosine Precision@1
312
+ - type: cosine_precision@3
313
+ value: 0.2538095238095238
314
+ name: Cosine Precision@3
315
+ - type: cosine_precision@5
316
+ value: 0.16199999999999998
317
+ name: Cosine Precision@5
318
+ - type: cosine_precision@10
319
+ value: 0.08642857142857142
320
+ name: Cosine Precision@10
321
+ - type: cosine_recall@1
322
+ value: 0.6157142857142858
323
+ name: Cosine Recall@1
324
+ - type: cosine_recall@3
325
+ value: 0.7614285714285715
326
+ name: Cosine Recall@3
327
+ - type: cosine_recall@5
328
+ value: 0.81
329
+ name: Cosine Recall@5
330
+ - type: cosine_recall@10
331
+ value: 0.8642857142857143
332
+ name: Cosine Recall@10
333
+ - type: cosine_ndcg@10
334
+ value: 0.7413954849024657
335
+ name: Cosine Ndcg@10
336
+ - type: cosine_mrr@10
337
+ value: 0.701954648526077
338
+ name: Cosine Mrr@10
339
+ - type: cosine_map@100
340
+ value: 0.707051130510896
341
+ name: Cosine Map@100
342
+ ---
343
+
344
+ # BGE base Financial Matryoshka
345
+
346
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
347
+
348
+ ## Model Details
349
+
350
+ ### Model Description
351
+ - **Model Type:** Sentence Transformer
352
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
353
+ - **Maximum Sequence Length:** 512 tokens
354
+ - **Output Dimensionality:** 768 tokens
355
+ - **Similarity Function:** Cosine Similarity
356
+ <!-- - **Training Dataset:** Unknown -->
357
+ - **Language:** en
358
+ - **License:** apache-2.0
359
+
360
+ ### Model Sources
361
+
362
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
363
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
364
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
365
+
366
+ ### Full Model Architecture
367
+
368
+ ```
369
+ SentenceTransformer(
370
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
371
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
372
+ (2): Normalize()
373
+ )
374
+ ```
375
+
376
+ ## Usage
377
+
378
+ ### Direct Usage (Sentence Transformers)
379
+
380
+ First install the Sentence Transformers library:
381
+
382
+ ```bash
383
+ pip install -U sentence-transformers
384
+ ```
385
+
386
+ Then you can load this model and run inference.
387
+ ```python
388
+ from sentence_transformers import SentenceTransformer
389
+
390
+ # Download from the 🤗 Hub
391
+ model = SentenceTransformer("gauravsirola/bge-base-financial-matryoshka-v1")
392
+ # Run inference
393
+ sentences = [
394
+ 'State legislation increasingly requires PBMs to conduct audits of network pharmacies regarding claims submitted for payment. Non-compliance could prevent the recoupment of overpaid amounts, potentially causing financial and legal repercussions.',
395
+ 'What are the potential consequences for a company if its PBMs fail to comply with pharmacy audit regulations?',
396
+ 'What pages do the Consolidated Financial Statements and their accompanying Notes and reports appear on in the document?',
397
+ ]
398
+ embeddings = model.encode(sentences)
399
+ print(embeddings.shape)
400
+ # [3, 768]
401
+
402
+ # Get the similarity scores for the embeddings
403
+ similarities = model.similarity(embeddings, embeddings)
404
+ print(similarities.shape)
405
+ # [3, 3]
406
+ ```
407
+
408
+ <!--
409
+ ### Direct Usage (Transformers)
410
+
411
+ <details><summary>Click to see the direct usage in Transformers</summary>
412
+
413
+ </details>
414
+ -->
415
+
416
+ <!--
417
+ ### Downstream Usage (Sentence Transformers)
418
+
419
+ You can finetune this model on your own dataset.
420
+
421
+ <details><summary>Click to expand</summary>
422
+
423
+ </details>
424
+ -->
425
+
426
+ <!--
427
+ ### Out-of-Scope Use
428
+
429
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
430
+ -->
431
+
432
+ ## Evaluation
433
+
434
+ ### Metrics
435
+
436
+ #### Information Retrieval
437
+ * Dataset: `dim_768`
438
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
439
+
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | cosine_accuracy@1 | 0.6786 |
443
+ | cosine_accuracy@3 | 0.8343 |
444
+ | cosine_accuracy@5 | 0.88 |
445
+ | cosine_accuracy@10 | 0.9086 |
446
+ | cosine_precision@1 | 0.6786 |
447
+ | cosine_precision@3 | 0.2781 |
448
+ | cosine_precision@5 | 0.176 |
449
+ | cosine_precision@10 | 0.0909 |
450
+ | cosine_recall@1 | 0.6786 |
451
+ | cosine_recall@3 | 0.8343 |
452
+ | cosine_recall@5 | 0.88 |
453
+ | cosine_recall@10 | 0.9086 |
454
+ | cosine_ndcg@10 | 0.7995 |
455
+ | cosine_mrr@10 | 0.7638 |
456
+ | **cosine_map@100** | **0.7674** |
457
+
458
+ #### Information Retrieval
459
+ * Dataset: `dim_512`
460
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:-----------|
464
+ | cosine_accuracy@1 | 0.6686 |
465
+ | cosine_accuracy@3 | 0.8271 |
466
+ | cosine_accuracy@5 | 0.8686 |
467
+ | cosine_accuracy@10 | 0.9129 |
468
+ | cosine_precision@1 | 0.6686 |
469
+ | cosine_precision@3 | 0.2757 |
470
+ | cosine_precision@5 | 0.1737 |
471
+ | cosine_precision@10 | 0.0913 |
472
+ | cosine_recall@1 | 0.6686 |
473
+ | cosine_recall@3 | 0.8271 |
474
+ | cosine_recall@5 | 0.8686 |
475
+ | cosine_recall@10 | 0.9129 |
476
+ | cosine_ndcg@10 | 0.7955 |
477
+ | cosine_mrr@10 | 0.7574 |
478
+ | **cosine_map@100** | **0.7607** |
479
+
480
+ #### Information Retrieval
481
+ * Dataset: `dim_256`
482
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
483
+
484
+ | Metric | Value |
485
+ |:--------------------|:-----------|
486
+ | cosine_accuracy@1 | 0.6729 |
487
+ | cosine_accuracy@3 | 0.8143 |
488
+ | cosine_accuracy@5 | 0.8643 |
489
+ | cosine_accuracy@10 | 0.9043 |
490
+ | cosine_precision@1 | 0.6729 |
491
+ | cosine_precision@3 | 0.2714 |
492
+ | cosine_precision@5 | 0.1729 |
493
+ | cosine_precision@10 | 0.0904 |
494
+ | cosine_recall@1 | 0.6729 |
495
+ | cosine_recall@3 | 0.8143 |
496
+ | cosine_recall@5 | 0.8643 |
497
+ | cosine_recall@10 | 0.9043 |
498
+ | cosine_ndcg@10 | 0.7916 |
499
+ | cosine_mrr@10 | 0.7553 |
500
+ | **cosine_map@100** | **0.7591** |
501
+
502
+ #### Information Retrieval
503
+ * Dataset: `dim_128`
504
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
505
+
506
+ | Metric | Value |
507
+ |:--------------------|:-----------|
508
+ | cosine_accuracy@1 | 0.6529 |
509
+ | cosine_accuracy@3 | 0.8114 |
510
+ | cosine_accuracy@5 | 0.85 |
511
+ | cosine_accuracy@10 | 0.8886 |
512
+ | cosine_precision@1 | 0.6529 |
513
+ | cosine_precision@3 | 0.2705 |
514
+ | cosine_precision@5 | 0.17 |
515
+ | cosine_precision@10 | 0.0889 |
516
+ | cosine_recall@1 | 0.6529 |
517
+ | cosine_recall@3 | 0.8114 |
518
+ | cosine_recall@5 | 0.85 |
519
+ | cosine_recall@10 | 0.8886 |
520
+ | cosine_ndcg@10 | 0.7754 |
521
+ | cosine_mrr@10 | 0.7386 |
522
+ | **cosine_map@100** | **0.7431** |
523
+
524
+ #### Information Retrieval
525
+ * Dataset: `dim_64`
526
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
527
+
528
+ | Metric | Value |
529
+ |:--------------------|:-----------|
530
+ | cosine_accuracy@1 | 0.6157 |
531
+ | cosine_accuracy@3 | 0.7614 |
532
+ | cosine_accuracy@5 | 0.81 |
533
+ | cosine_accuracy@10 | 0.8643 |
534
+ | cosine_precision@1 | 0.6157 |
535
+ | cosine_precision@3 | 0.2538 |
536
+ | cosine_precision@5 | 0.162 |
537
+ | cosine_precision@10 | 0.0864 |
538
+ | cosine_recall@1 | 0.6157 |
539
+ | cosine_recall@3 | 0.7614 |
540
+ | cosine_recall@5 | 0.81 |
541
+ | cosine_recall@10 | 0.8643 |
542
+ | cosine_ndcg@10 | 0.7414 |
543
+ | cosine_mrr@10 | 0.702 |
544
+ | **cosine_map@100** | **0.7071** |
545
+
546
+ <!--
547
+ ## Bias, Risks and Limitations
548
+
549
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
550
+ -->
551
+
552
+ <!--
553
+ ### Recommendations
554
+
555
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
556
+ -->
557
+
558
+ ## Training Details
559
+
560
+ ### Training Dataset
561
+
562
+ #### Unnamed Dataset
563
+
564
+
565
+ * Size: 6,300 training samples
566
+ * Columns: <code>positive</code> and <code>anchor</code>
567
+ * Approximate statistics based on the first 1000 samples:
568
+ | | positive | anchor |
569
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
570
+ | type | string | string |
571
+ | details | <ul><li>min: 7 tokens</li><li>mean: 44.73 tokens</li><li>max: 301 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.57 tokens</li><li>max: 41 tokens</li></ul> |
572
+ * Samples:
573
+ | positive | anchor |
574
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
575
+ | <code>Net loss was $396.6 million and $973.6 million during the years ended December 31, 2023, and December 31, 2022, respectively.</code> | <code>What was the net loss for the year ended December 31, 2022?</code> |
576
+ | <code>Under the 2023 IDA agreement, the service fee on client cash deposits held at the TD Depository Institutions remains at 15 basis points, as it was in the 2019 IDA agreement.</code> | <code>How much is the service fee on client cash deposits held at the TD Depository Institutions under the 2023 IDA agreement?</code> |
577
+ | <code>The total shareholders’ deficit is listed as $7,994.8 million in the latest financial statement.</code> | <code>What is the total shareholder's deficit according to the latest financial statement?</code> |
578
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
579
+ ```json
580
+ {
581
+ "loss": "MultipleNegativesRankingLoss",
582
+ "matryoshka_dims": [
583
+ 768,
584
+ 512,
585
+ 256,
586
+ 128,
587
+ 64
588
+ ],
589
+ "matryoshka_weights": [
590
+ 1,
591
+ 1,
592
+ 1,
593
+ 1,
594
+ 1
595
+ ],
596
+ "n_dims_per_step": -1
597
+ }
598
+ ```
599
+
600
+ ### Training Hyperparameters
601
+ #### Non-Default Hyperparameters
602
+
603
+ - `eval_strategy`: epoch
604
+ - `per_device_train_batch_size`: 32
605
+ - `per_device_eval_batch_size`: 16
606
+ - `gradient_accumulation_steps`: 16
607
+ - `learning_rate`: 2e-05
608
+ - `num_train_epochs`: 4
609
+ - `lr_scheduler_type`: cosine
610
+ - `warmup_ratio`: 0.1
611
+ - `bf16`: True
612
+ - `tf32`: True
613
+ - `load_best_model_at_end`: True
614
+ - `optim`: adamw_torch_fused
615
+ - `batch_sampler`: no_duplicates
616
+
617
+ #### All Hyperparameters
618
+ <details><summary>Click to expand</summary>
619
+
620
+ - `overwrite_output_dir`: False
621
+ - `do_predict`: False
622
+ - `eval_strategy`: epoch
623
+ - `prediction_loss_only`: True
624
+ - `per_device_train_batch_size`: 32
625
+ - `per_device_eval_batch_size`: 16
626
+ - `per_gpu_train_batch_size`: None
627
+ - `per_gpu_eval_batch_size`: None
628
+ - `gradient_accumulation_steps`: 16
629
+ - `eval_accumulation_steps`: None
630
+ - `learning_rate`: 2e-05
631
+ - `weight_decay`: 0.0
632
+ - `adam_beta1`: 0.9
633
+ - `adam_beta2`: 0.999
634
+ - `adam_epsilon`: 1e-08
635
+ - `max_grad_norm`: 1.0
636
+ - `num_train_epochs`: 4
637
+ - `max_steps`: -1
638
+ - `lr_scheduler_type`: cosine
639
+ - `lr_scheduler_kwargs`: {}
640
+ - `warmup_ratio`: 0.1
641
+ - `warmup_steps`: 0
642
+ - `log_level`: passive
643
+ - `log_level_replica`: warning
644
+ - `log_on_each_node`: True
645
+ - `logging_nan_inf_filter`: True
646
+ - `save_safetensors`: True
647
+ - `save_on_each_node`: False
648
+ - `save_only_model`: False
649
+ - `restore_callback_states_from_checkpoint`: False
650
+ - `no_cuda`: False
651
+ - `use_cpu`: False
652
+ - `use_mps_device`: False
653
+ - `seed`: 42
654
+ - `data_seed`: None
655
+ - `jit_mode_eval`: False
656
+ - `use_ipex`: False
657
+ - `bf16`: True
658
+ - `fp16`: False
659
+ - `fp16_opt_level`: O1
660
+ - `half_precision_backend`: auto
661
+ - `bf16_full_eval`: False
662
+ - `fp16_full_eval`: False
663
+ - `tf32`: True
664
+ - `local_rank`: 0
665
+ - `ddp_backend`: None
666
+ - `tpu_num_cores`: None
667
+ - `tpu_metrics_debug`: False
668
+ - `debug`: []
669
+ - `dataloader_drop_last`: False
670
+ - `dataloader_num_workers`: 0
671
+ - `dataloader_prefetch_factor`: None
672
+ - `past_index`: -1
673
+ - `disable_tqdm`: False
674
+ - `remove_unused_columns`: True
675
+ - `label_names`: None
676
+ - `load_best_model_at_end`: True
677
+ - `ignore_data_skip`: False
678
+ - `fsdp`: []
679
+ - `fsdp_min_num_params`: 0
680
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
681
+ - `fsdp_transformer_layer_cls_to_wrap`: None
682
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
683
+ - `deepspeed`: None
684
+ - `label_smoothing_factor`: 0.0
685
+ - `optim`: adamw_torch_fused
686
+ - `optim_args`: None
687
+ - `adafactor`: False
688
+ - `group_by_length`: False
689
+ - `length_column_name`: length
690
+ - `ddp_find_unused_parameters`: None
691
+ - `ddp_bucket_cap_mb`: None
692
+ - `ddp_broadcast_buffers`: False
693
+ - `dataloader_pin_memory`: True
694
+ - `dataloader_persistent_workers`: False
695
+ - `skip_memory_metrics`: True
696
+ - `use_legacy_prediction_loop`: False
697
+ - `push_to_hub`: False
698
+ - `resume_from_checkpoint`: None
699
+ - `hub_model_id`: None
700
+ - `hub_strategy`: every_save
701
+ - `hub_private_repo`: False
702
+ - `hub_always_push`: False
703
+ - `gradient_checkpointing`: False
704
+ - `gradient_checkpointing_kwargs`: None
705
+ - `include_inputs_for_metrics`: False
706
+ - `eval_do_concat_batches`: True
707
+ - `fp16_backend`: auto
708
+ - `push_to_hub_model_id`: None
709
+ - `push_to_hub_organization`: None
710
+ - `mp_parameters`:
711
+ - `auto_find_batch_size`: False
712
+ - `full_determinism`: False
713
+ - `torchdynamo`: None
714
+ - `ray_scope`: last
715
+ - `ddp_timeout`: 1800
716
+ - `torch_compile`: False
717
+ - `torch_compile_backend`: None
718
+ - `torch_compile_mode`: None
719
+ - `dispatch_batches`: None
720
+ - `split_batches`: None
721
+ - `include_tokens_per_second`: False
722
+ - `include_num_input_tokens_seen`: False
723
+ - `neftune_noise_alpha`: None
724
+ - `optim_target_modules`: None
725
+ - `batch_eval_metrics`: False
726
+ - `batch_sampler`: no_duplicates
727
+ - `multi_dataset_batch_sampler`: proportional
728
+
729
+ </details>
730
+
731
+ ### Training Logs
732
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
733
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
734
+ | 0.8122 | 10 | 1.5585 | - | - | - | - | - |
735
+ | 0.9746 | 12 | - | 0.7207 | 0.7441 | 0.7510 | 0.6857 | 0.7493 |
736
+ | 1.6244 | 20 | 0.6691 | - | - | - | - | - |
737
+ | 1.9492 | 24 | - | 0.7392 | 0.7564 | 0.7601 | 0.7006 | 0.7661 |
738
+ | 2.4365 | 30 | 0.4702 | - | - | - | - | - |
739
+ | 2.9239 | 36 | - | 0.7430 | 0.7600 | 0.7619 | 0.7065 | 0.7685 |
740
+ | 3.2487 | 40 | 0.407 | - | - | - | - | - |
741
+ | **3.8985** | **48** | **-** | **0.7431** | **0.7591** | **0.7607** | **0.7071** | **0.7674** |
742
+
743
+ * The bold row denotes the saved checkpoint.
744
+
745
+ ### Framework Versions
746
+ - Python: 3.10.6
747
+ - Sentence Transformers: 3.0.1
748
+ - Transformers: 4.41.2
749
+ - PyTorch: 2.1.2+cu121
750
+ - Accelerate: 0.31.0
751
+ - Datasets: 2.19.1
752
+ - Tokenizers: 0.19.1
753
+
754
+ ## Citation
755
+
756
+ ### BibTeX
757
+
758
+ #### Sentence Transformers
759
+ ```bibtex
760
+ @inproceedings{reimers-2019-sentence-bert,
761
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
762
+ author = "Reimers, Nils and Gurevych, Iryna",
763
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
764
+ month = "11",
765
+ year = "2019",
766
+ publisher = "Association for Computational Linguistics",
767
+ url = "https://arxiv.org/abs/1908.10084",
768
+ }
769
+ ```
770
+
771
+ #### MatryoshkaLoss
772
+ ```bibtex
773
+ @misc{kusupati2024matryoshka,
774
+ title={Matryoshka Representation Learning},
775
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
776
+ year={2024},
777
+ eprint={2205.13147},
778
+ archivePrefix={arXiv},
779
+ primaryClass={cs.LG}
780
+ }
781
+ ```
782
+
783
+ #### MultipleNegativesRankingLoss
784
+ ```bibtex
785
+ @misc{henderson2017efficient,
786
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
787
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
788
+ year={2017},
789
+ eprint={1705.00652},
790
+ archivePrefix={arXiv},
791
+ primaryClass={cs.CL}
792
+ }
793
+ ```
794
+
795
+ <!--
796
+ ## Glossary
797
+
798
+ *Clearly define terms in order to be accessible across audiences.*
799
+ -->
800
+
801
+ <!--
802
+ ## Model Card Authors
803
+
804
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
805
+ -->
806
+
807
+ <!--
808
+ ## Model Card Contact
809
+
810
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
811
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a67196d3011d37bc9f9afed11daca33f98d4c71379c9a611c2d4ad0770e3427
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff