fullstuck's picture
End of training
8e994a4 verified
|
raw
history blame
4.75 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4875

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4148
  • Accuracy: 0.4875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 2.0788 0.1125
No log 2.0 80 2.0706 0.1688
No log 3.0 120 2.0465 0.2062
No log 4.0 160 2.0386 0.2
No log 5.0 200 2.0110 0.2188
No log 6.0 240 1.9815 0.225
No log 7.0 280 1.9430 0.2313
No log 8.0 320 1.8889 0.3312
No log 9.0 360 1.8283 0.3063
No log 10.0 400 1.7769 0.3438
No log 11.0 440 1.7292 0.325
No log 12.0 480 1.6966 0.3312
1.885 13.0 520 1.6708 0.375
1.885 14.0 560 1.6527 0.3937
1.885 15.0 600 1.6266 0.3937
1.885 16.0 640 1.6116 0.3937
1.885 17.0 680 1.5944 0.4188
1.885 18.0 720 1.5931 0.3688
1.885 19.0 760 1.5645 0.3937
1.885 20.0 800 1.5503 0.45
1.885 21.0 840 1.5550 0.425
1.885 22.0 880 1.5370 0.4375
1.885 23.0 920 1.5239 0.4688
1.885 24.0 960 1.5240 0.4437
1.4797 25.0 1000 1.5031 0.4688
1.4797 26.0 1040 1.5183 0.4188
1.4797 27.0 1080 1.4949 0.4062
1.4797 28.0 1120 1.5014 0.4437
1.4797 29.0 1160 1.4766 0.4625
1.4797 30.0 1200 1.4892 0.4375
1.4797 31.0 1240 1.4812 0.4938
1.4797 32.0 1280 1.4472 0.4688
1.4797 33.0 1320 1.4744 0.425
1.4797 34.0 1360 1.4563 0.4562
1.4797 35.0 1400 1.4785 0.4313
1.4797 36.0 1440 1.4331 0.5125
1.4797 37.0 1480 1.4551 0.45
1.293 38.0 1520 1.4470 0.4625
1.293 39.0 1560 1.4695 0.4375
1.293 40.0 1600 1.4366 0.4813
1.293 41.0 1640 1.4350 0.5
1.293 42.0 1680 1.4181 0.475
1.293 43.0 1720 1.4428 0.4875
1.293 44.0 1760 1.4067 0.5188
1.293 45.0 1800 1.4058 0.475
1.293 46.0 1840 1.4341 0.475
1.293 47.0 1880 1.4082 0.4813
1.293 48.0 1920 1.4461 0.4688
1.293 49.0 1960 1.4136 0.5062
1.1998 50.0 2000 1.4226 0.4938

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2