--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.4875 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4148 - Accuracy: 0.4875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 40 | 2.0788 | 0.1125 | | No log | 2.0 | 80 | 2.0706 | 0.1688 | | No log | 3.0 | 120 | 2.0465 | 0.2062 | | No log | 4.0 | 160 | 2.0386 | 0.2 | | No log | 5.0 | 200 | 2.0110 | 0.2188 | | No log | 6.0 | 240 | 1.9815 | 0.225 | | No log | 7.0 | 280 | 1.9430 | 0.2313 | | No log | 8.0 | 320 | 1.8889 | 0.3312 | | No log | 9.0 | 360 | 1.8283 | 0.3063 | | No log | 10.0 | 400 | 1.7769 | 0.3438 | | No log | 11.0 | 440 | 1.7292 | 0.325 | | No log | 12.0 | 480 | 1.6966 | 0.3312 | | 1.885 | 13.0 | 520 | 1.6708 | 0.375 | | 1.885 | 14.0 | 560 | 1.6527 | 0.3937 | | 1.885 | 15.0 | 600 | 1.6266 | 0.3937 | | 1.885 | 16.0 | 640 | 1.6116 | 0.3937 | | 1.885 | 17.0 | 680 | 1.5944 | 0.4188 | | 1.885 | 18.0 | 720 | 1.5931 | 0.3688 | | 1.885 | 19.0 | 760 | 1.5645 | 0.3937 | | 1.885 | 20.0 | 800 | 1.5503 | 0.45 | | 1.885 | 21.0 | 840 | 1.5550 | 0.425 | | 1.885 | 22.0 | 880 | 1.5370 | 0.4375 | | 1.885 | 23.0 | 920 | 1.5239 | 0.4688 | | 1.885 | 24.0 | 960 | 1.5240 | 0.4437 | | 1.4797 | 25.0 | 1000 | 1.5031 | 0.4688 | | 1.4797 | 26.0 | 1040 | 1.5183 | 0.4188 | | 1.4797 | 27.0 | 1080 | 1.4949 | 0.4062 | | 1.4797 | 28.0 | 1120 | 1.5014 | 0.4437 | | 1.4797 | 29.0 | 1160 | 1.4766 | 0.4625 | | 1.4797 | 30.0 | 1200 | 1.4892 | 0.4375 | | 1.4797 | 31.0 | 1240 | 1.4812 | 0.4938 | | 1.4797 | 32.0 | 1280 | 1.4472 | 0.4688 | | 1.4797 | 33.0 | 1320 | 1.4744 | 0.425 | | 1.4797 | 34.0 | 1360 | 1.4563 | 0.4562 | | 1.4797 | 35.0 | 1400 | 1.4785 | 0.4313 | | 1.4797 | 36.0 | 1440 | 1.4331 | 0.5125 | | 1.4797 | 37.0 | 1480 | 1.4551 | 0.45 | | 1.293 | 38.0 | 1520 | 1.4470 | 0.4625 | | 1.293 | 39.0 | 1560 | 1.4695 | 0.4375 | | 1.293 | 40.0 | 1600 | 1.4366 | 0.4813 | | 1.293 | 41.0 | 1640 | 1.4350 | 0.5 | | 1.293 | 42.0 | 1680 | 1.4181 | 0.475 | | 1.293 | 43.0 | 1720 | 1.4428 | 0.4875 | | 1.293 | 44.0 | 1760 | 1.4067 | 0.5188 | | 1.293 | 45.0 | 1800 | 1.4058 | 0.475 | | 1.293 | 46.0 | 1840 | 1.4341 | 0.475 | | 1.293 | 47.0 | 1880 | 1.4082 | 0.4813 | | 1.293 | 48.0 | 1920 | 1.4461 | 0.4688 | | 1.293 | 49.0 | 1960 | 1.4136 | 0.5062 | | 1.1998 | 50.0 | 2000 | 1.4226 | 0.4938 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2