Muhammad Firdho
End of training
1610fdb verified
metadata
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: speech-emotion-recognition
    results: []

speech-emotion-recognition

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5578
  • Accuracy: 0.8225
  • Precision: 0.8278
  • Recall: 0.8225
  • F1: 0.8212

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.3499 1.0 394 1.2619 0.7120 0.7251 0.7120 0.7116
0.6955 2.0 788 0.7781 0.7799 0.7919 0.7799 0.7793
0.8665 3.0 1182 0.5578 0.8225 0.8278 0.8225 0.8212

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1