--- license: apache-2.0 base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: speech-emotion-recognition results: [] --- # speech-emotion-recognition This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5578 - Accuracy: 0.8225 - Precision: 0.8278 - Recall: 0.8225 - F1: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.3499 | 1.0 | 394 | 1.2619 | 0.7120 | 0.7251 | 0.7120 | 0.7116 | | 0.6955 | 2.0 | 788 | 0.7781 | 0.7799 | 0.7919 | 0.7799 | 0.7793 | | 0.8665 | 3.0 | 1182 | 0.5578 | 0.8225 | 0.8278 | 0.8225 | 0.8212 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1